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Abstract 

The current standard model for calculating film thickness is not sufficiently detailed to 

adequately reflect differences in hot mix asphalt mixtures; and therefore, has limited value as a tool to 

evaluate research or mix designs. Modifications to the model (or replacement of the model) would 

give practitioners a better tool to assess the durability potential of a hot mix asphalt mixture. 

Durability is an important characteristics of hot mix asphalt that must get adequate attention 

to insure long-term performance of hot mix asphalt. Film thickness is one mixture parameter used to 

characterize a mixture's potential durability. The standard film thickness model is only a nominal 

approximation that applies 1940's technology. 

This study develops two film thickness models that more accurately reflect the relationship of 

the asphalt binder coating to other mixture parameters. The INDEX Model uses basic weight and 

volume relationships on each aggregate source in the mixture to improve the surface area value used 

in the standard model. The VIRTUAL Model uses three-dimensional concepts to redefine film 

thickness as the spatial relationship between aggregate particles and air voids. The VIRTUAL Model 

allows the practitioner to compute the film thickness at any level of field compacted density. 

The study examines the historical development and application of the standard film thickness 

model. The proposed film thickness models account for the individual aggregate source gradations, 

specific gravities, and particle shape that comprise the hot mix asphalt blend. The study provides a 

practical approach to the significant contribution of the mineral filler as both an aggregate and asphalt 

binder extender. These parameters were not adequately accounted for prior to this study. 

These new film thickness models provide the asphalt community with improved approaches 

to calculating film thickness that better reflect the unique properties of each hot mix asphalt mixture. 

Based on the analysis in this study, future studies of hot mix asphalt durability will have a more 

accurate perception of film thickness to compare differences in hot mix asphalt durability. 
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Chapter 1. Introduction 

Film thickness is one of many volumetric characteristics of HMA that are generally accepted, 

but film thickness is not often seriously applied. Like VMA and other volumetric properties, film 

thickness is a computed value, not a physically measured property. In a very literal sense, the 

current definition of the film thickness value is the thickness of the effective asphalt binder coating on 

each particle in the mixture assuming all aggregate particles are uniformly and equally coated. 

Most HMA practitioners will generally agree that film thickness is primarily a tool used to 

insure that the HMA has adequate asphalt binder to achieve a desired level of mix durability. This is 

easily supported by the type of research that applies film thickness as one of the analysis factors. 

So why does film thickness get so little attention in the HMA community? The responses to 

this question are, in many ways, the basis for this research effort. Both the definition of film thickness 

and the method by which it is computed are likely reasons why it is not used. By its definition, the film 

thickness value is based on the assumption that all particles are coated uniformly and equally. The 

particles range from coarse aggregate (greater than 4.75 mm size), to the sand fractions (greater 

than 0.075 mm), down to very fine flakes of mineral filler (less than 0.020 mm). All of these particles 

play different roles in the HMA aggregate structure, yet the definition of film thickness treats them all 

equal. 

The accepted method of computing film thickness dates back to the development of the 

Hveem mix design procedure and the use of paper, pencil and slide rule. The procedure for 

computing the surface area of all the aggregate particles only requires the weighted proportion of the 

combined aggregate on each sieve. Any differences in particle specific gravity, shape, and texture 

are ignored. Two mixtures with identical gradations (by weight) will have equal film thickness values 

(assuming equal binder volume) even if the specific gravities of the two mixes are significantly 

different. This problem is further complicated by the development of special mixes, like open graded 

friction course and stone mastic asphalt. The original film thickness procedure was based on 

relatively fine, dense graded mixes. 

At best, the current film thickness value is an approximate index for evaluating the potential 

durability of the HMA. Similar to VMA (1,2), many HMA practitioners question the value of film 

thickness as an HMA volumetric characteristic if the procedure is too simple and does not properly 

account for easily recognized variables. 

The current standard model for calculating film thickness is not sufficiently detailed to 

adequately reflect differences in hot mix asphalt mixtures; and therefore, has limited value as a tool to 

evaluate research or mix designs. Modifications to the model (or replacement of the model) would 

give practitioners a better tool to assess the durability potential of a hot mix asphalt mixture. 
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This research was undertaken to improve on the simple approach to a film thickness value 

using the knowledge and tools available today. The objectives of this study are to: 

(1) develop a more accurate measure of film thickness, 

(2) evaluate past HMA durability studies based on better film thickness models, and 

(3) examine the impact of new models on hot mix asphalt job mix formulas used in Iowa. 

This study does not attempt to validate the current procedure and criteria. Rather, it is 

structured to replace the current procedure and establish new film thickness criteria for good HMA 

durability performance. 

So why examine the concept of film thickness if the current HMA practice does not endorse 

its use? In fact, much of the present HMA research is directed towards mixture performance under 

load. Currently developing HMA performance tests generally measure mixture properties related to 

rutting and fatigue and are not directly related to the durability of the mix. 

Most public agencies and commercial property owners that design and award HMA projects 

use a single pay factor for placement of HMA. This single bid item typically requires the contractor to 

develop the blend of aggregates and asphalt binder (mix design), produce the HMA, and 

place/compact the HMA. A major portion of the cost is the asphalt binder, so the contractor is 

focused on keeping the asphalt binder content to a minimum. Yet it is in the agency/owner's interest 

to insure that the finished pavement is durable. Durability is generally acceptable if the mix has an 

adequate asphalt binder content. The mixture's volumetric property -film thickness- is the computed 

index that defines sufficient asphalt binder for durability. 

Another reason to continue to examine HMA volumetric relationships is production quality 

control. While significant improvements in performance testing are emerging, a simple and rapid 

analysis of HMA mixture volumetrics will continue to be a predominant tool for monitoring and 

troubleshooting HMA production. Film thickness is one of only a few HMA volumetric properties that 

directly relate the aggregate characteristics (specifically gradation) to the volume of effective asphalt 

binder. 

This research study is accomplished in three distinct phases that follow the objectives. 

• Phase I of the study proposes two new methods for computing film thickness. One method is a 

better approximation of the surface area of the aggregate so that the film thickness value better 

represents the mixture in question. The other is a three-dimensional model. 

• Phase II of the study uses the new computation procedures to examine databases from previous 

HMA durability studies to determine if better relationships are created. 

• Phase III of the study draws from the population of hot mix asphalt job mix formulas applied in 

Iowa to observe how the practicing mixtures respond to the new concepts. 
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Chapter 2. Background 

As asphalt paving technology evolved in the early 1900s, one of the predominant 

performance characteristics of the pavement was the hardening of the pavement material. It is very 

likely that these early pavements were built on poorly compacted, soft soil foundations and needed to 

be flexible. As the science and engineering of asphalt pavements developed into the 1930s, one of 

the recognized criteria for the paving material was asphalt binder hardening. Certainly a part of the 

focus was on the type or grade of asphalt binder, but practitioners also began to recognize the 

relationship between the aggregate gradation and amount of asphalt binder as a factor in hardening. 

As mix design methods for dense graded HMA emerged, three concepts became dominant in 

technical circles. They are the Francis Hveem method (California), the Bruce Marshall method 

(Mississippi), and a little later, the Norm McLeod (VMA) method (Canada)(3). The Hveem method of 

mix design includes a confined stability component and a "target" asphalt content. The asphalt 

content is based on the aggregate surface area and aggregate surface characteristics. The Marshall 

method of mix design focused heavily on the density and stability of the mixture. McLeod promoted 

the importance of achieving a "minimum" binder content and introduced the VMA criteria. 

Both Hveem and McLeod applied a concept of minimum asphalt binder content to address 

long-term durability of dense graded HMA mixtures, but the approaches are very different. McLeod's 

VMA approach has been examined through numerous studies because it does not account for 

variations in the aggregate gradation. And yet, it is the accepted criteria for establishing mixture 

durability for most asphalt practitioners. Hveem's surface area approach is used frequently in 

research studies, but is not a commonly accepted criteria for mix design. Studies report that neither 

approach to define mixture durability are founded on extensive research. In fact, both are criteria 

based on a fairly narrow and local basis of paving materials and pavement performance. 

Both the Hveem and Marshall mix design procedures were developed in the 1940s and were 

outlined in the first edition of the Asphalt Institute Manual Series No. 2 in 1956 (4). The Hveem mix 

design procedure was developed for the California Highways and Public Works and documented in 

1942. In the Hveem mix design procedure, the surface area calculation is part of the determination of 

the "estimated-optimum" asphalt binder content using the Centrifuge Kerosene Equivalent method. 

Hveem's surface area factors are still used today to determine the film thickness value. 

The more intense interest and study of mixture durability followed in the 1950s. Both the 

VMA concept and the film thickness concept are products of this period of HMA development. The 

formal Hveem mix design procedure does not use film thickness, only the surface area calculation. 

The concept of film thickness was introduced by Campen and others during this period and applied 

Hveem's surface area value into the film thickness equation. 

In 1955, McLaughlin and Goetz discussed the relationship between permeability, mixture air 

voids, and pavement durability (5). At the same time, McLeod proposed VMA as a volumetric 
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parameter to insure that mixture gradation had sufficient space to hold both the air voids and a 

desired minimum asphalt content (6). By 1957, Campen and Lefebvre also reported on the 

importance of controlling the VMA, but Campen proposed that VMA should be a function of mixture 

air voids and a desired level of film thickness (7,8). In 1959, Campen reported on a study of mixture 

stability as it relates to air voids, aggregate surface area, and film thickness (9). 

Campen, et al. (7) studied the impact of 20 variations in aggregate gradations on mixture 

volumetric properties. They found that the proportion of coarse aggregate and fine aggregate does 

influence the VMA. Further they conclude,... "our conception of a satisfactory mixture is one in 

which the aggregate contains enough voids to permit the addition of sufficient asphalt to 

provide comparatively thick films without filling all voids in the aggregate." During the 

discussion of this paper at the AAPT meeting in 1957, Goetz and Campen discuss the differences in 

asphalt binder distribution between coarse aggregate and fine aggregate and the concept of using 

film thickness as a mix design parameter. This is the first documented statement to propose the use 

of a film thickness value in HMA mix design. 

Two years later (1959) this same group of researchers expanded on their original concept 

(9). The focus of this second effort was to demonstrate that mixtures with equal VMA could have 

significantly different aggregate surface area (and durability). The 1959 report outlines the factors 

used to calculate film thickness, but does not express the equation. The surface area was derived 

from the Hveem formula and the computed film thickness ... "assumed that all the asphalt exists 

in the form of uniform films as long as appreciable air voids exist." The authors recognized that 

this assumption was not totally correct, but it was adequate for the purpose of their study. The 

report's summary notes that asphalt binder demand increases as surface area increases, but not at a 

proportional rate; and therefore, the desired film thickness decreases as the surface area increases. 

This concept of film thickness stirred a lively debate among numerous practitioners. Half of the 

comments favored a film thickness value (or an asphalt binder volume:aggregate surface area ratio) 

and the other half defended the VMA concept. Of particular note, H. G. Nevitt stated that he 

presented a paper on another approach to film thickness at the 1957 Seventh Pan American Highway 

Congress in Panama. Nevitt's paper was not pursued for this report. 

McLeod's approach using VMA replaced the VFA parameter in the Marshall mix design 

procedure and the Marshall procedure became the dominant practice across the country. As the 

level of experience and expertise grew, some practitioners questioned the universal application of the 

VMA concept. Since VMA was intended to satisfy mixture durability, a few researchers began taking 

a closer look at HMA mixture durability. In 1965, Goode and Lufsey reported that HMA mixture 

durability is a function of a combination of factors (10). This United States Bureau of Public Roads 

study compared the measured Marshall stability and extracted asphalt binder properties of laboratory 

aged and un-aged specimens. They identified clear trends in the data to conclude that air voids, film 
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thickness (expressed as bitumen index), and permeability all played a role in mixture hardening. The 

report proposed "that a combined factor consisting of a ratio of air voids to bitumen index 

provided a satisfactory means of comparing mixtures [with respect to resistance to asphalt 

hardening], regardless of aggregate gradation." 

In 1977, research by Kumar and Goetz concluded that mixture durability was primarily 

influenced by mixture permeability (11 ). "Logically speaking, only that asphalt in a compacted 

asphaltic mixture which is accessible to open air will be hardened by oxidation. If the 

thickness of the asphalt coating on the aggregate is greater, a longer time will be needed for 

the entire thickness of the asphalt film to become hardened and vice versa. " The study was 

conducted at Purdue University and again, film thickness, air voids, and permeability were the target 

mixture parameters. The study included both open-graded and dense graded mixtures, but all 

mineral filler passing the 0.150-mm (No.100) sieve was removed from the mixes. A non-destructive 

compressive creep test measured the laboratory specimens as they aged. Three groups of mixtures 

were prepared, aged, tested, and statistically analyzed. The film thickness equation used the 

effective binder content. For open-graded mixtures, the study found that a ratio of film thickness to 

permeability had the best correlation to the creep test results. For dense-graded mixtures the 

analysis showed that the all three mixture parameters properly predicted mixture durability, but there 

was no significant difference between them. 

By the early 1980's, pavements were struggling to achieve acceptable performance levels. 

The highway community embarked on a national research program, the Strategic Highway Research 

Program, in the mid 1980's to address the problem. The asphalt paving researchers and practitioners 

developed the Superpave mix design system. As part of Superpave development, hot mix asphalt 

experts listed and ranked the key mixture parameters. Film thickness appears on the short-list, but 

did not become a part of the mix design system. 

Additional laboratory research in mixture durability started in the mid 1990s. Predominant 

reports by Kandahl and Chakraborty (12) in 1996, Nukunya, Roque, et al. (13) in 2001, and Ruth, et 

al. (14) in 2002 examined film thickness and/or VMA as a measure of mixture durability. Kandahl and 

Chakraborty focused on building supporting research for the minimum value of film thickness to 

ensure reasonable mixture durability. Both the mixture and asphalt binder were subjected to dynamic 

tests (resilient modulus and complex modulus) to measure the impact of laboratory short-term and 

long-term aging (STOA and LTOA). Beyond the studies in the 1960's and 1970's, this research 

recognized the critical difference between mix design and in-place mixture air voids. Previous 

research on HMA durability prepared specimens at 4 percent air voids, but the work by Kandahl and 

Chakraborty prepared specimens at the typical post-construction in-place air voids of 8 percent. The 

report concluded that "good correlation was obtained between the asphalt film thickness and 
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the resilient modulus of the aged asphalt paving mixtures" and between the asphalt film 

thickness and the aged asphalt binder properties. 

Nukunya, Roque, et al. examined the STOA and LTOA properties of six limestone mixes 

(13). The study concluded that current volumetric values did not distinguish between mixes with 

different levels of durability. "Results indicated that the rate of binder hardening in mixtures was 

not related to either the VMA or the film thickness of mixtures as currently determined." The 

study uses extracted binder tests and dynamic performance tests of the mixture to measure the effect 

of STOA and LTOA for comparison to the volumetric values. The study modified the volumetric 

equations to recognize the different contribution of coarse aggregate and fine aggregate. The study 

develops a new FT equation based on the surface area of the fine aggregate. 

In 2002, Ruth et al. expanded on the 2001 durability study. The research studied ten 

mixtures to define gradation characteristics that influence mixture performance after STOA and LTOA 

(14). Mixture durability was not the focus, but the results of the laboratory testing demonstrated the 

impact of film thickness on the behavior of HMA as the mixture ages. The study recognized the 

strong dependency of fine aggregate gradation and mineral filler content on the surface area of the 

mixture. "Several fine graded mixtures (with low FT) were found to be more susceptible to long 

term oven aging (LTOA) when failure strains were compared to those for STOA." 

These reports from the mid 1990s and early 2000s examined film thickness as a durability 

parameter. The general consensus acknowledged that film thickness is a parameter, but lack of 

strong research measurement correlation usually eliminated film thickness as a strong parameter. 

Although some studies questioned the film thickness equation, they all used the 1942 Hveem table to 

determine aggregate surface area and applied Cam pen's 1959 approach for determining film 

thickness. 

In 2003, Radowskiy stepped away from the standard concept and proposed a new approach 

for defining HMA mixture film thickness (15). The proposed procedure dropped the two-dimensional 

surface area concept and introduced a three-dimensional mixture model that better resembles HMA 

mixtures. This approach models the random geometric orientation of size-graded spheres and 

distributes the binder into the remaining available space. It takes into account that FT is not a uniform 

coating of each particle. This study analyzed the same six mixtures as Nukunya, Roque, et al.. The 

study develops a new FT equation based on particle size distribution, mixture volumetrics, and 

requires detailed knowledge of the mineral filler particle distribution. 

In general, HMA durability is a function of asphalt binder content, aggregate gradation, and 

mixture volumetrics. The history of HMA technology related to mixture durability shows that VMA is 

the accepted parameter, but film thickness is also recognized as a parameter. Studies in the last ten 

years routinely compared VMA and film thickness values to mixture durability. 
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Chapter 3. A Better Film Thickness Equation 

Limitations of the Existing Equation 

Film Thickness has been expressed in a number of ways over the years. The original 

equation was expressed in English variables and metric solution. It used the English values of total 

binder volume, weight of aggregate per cubic foot, the computed surface area. A constant converted 

the equation to film thickness in microns (0.001 mm). The equation was later improved to account for 

the absorbed asphalt binder. This equation (Equation 1) is used in the NCAT HMA manual (16). 

FT =  3 0 4 , 8 0 0 — —  ( f o r  E n g l i s h  S A  c o n s t a n t s )  e q - 1  

where: FT = mixture film thickness (microns, 0.001 mm) 
Vbe = volume of effective asphalt binder ( ft3/ft3 of mix ) 
SA = surface area of the gradation ( ff/lb ) 
Ws = weight of aggregate ( lb/ft3 of mix ) 

This same equation can be converted to common mix design values and changed to metric 

units. Most mix design values are expressed as percent of total weight and accompanied by 

measured specific gravity values to apply to volumetric equations. To convert the NCAT film 

thickness equation, the volume of binder is expressed as the percent of effective binder (Pbe) by 

weight of total mix divided by the binder specific gravity. The weight of aggregate is expressed as the 

percent of aggregate (Ps) by weight of total mix. Since the binder and aggregate terms are 

expressed as percent of the total mix, the units of the surface area value will dictate the value of the 

constant so that the film thickness is expressed in microns (1 micron = 0.001 mm). The result using 

the metric value for surface area is given as Equation 2. 

Pbe 
FT = 1000 (for metric SA constants) eq-2 

where: FT = mixture film thickness (microns, 0.001 mm) 
Pbe = percent (by mix weight) of effective asphalt binder 
SA = surface area of the gradation ( m2/kg ) 
Ps = percent (by mix weight) of aggregate 
Gb = specific gravity of the asphalt binder 

This equation can be further refined to avoid an intermediate step of determining the percent 

aggregate by weight of total mix. The percent aggregate can be expressed in terms of the percent 

effective binder and percent absorbed binder. The percent absorbed binder is based on aggregate 



www.manaraa.com

weight, not mix weight. Equation 3 shows the relationship for percent aggregate and Equation 4 

shows the resulting film thickness equation. 

Ps = 100^°-Pbe\ eq-3 
(100 + Pba) 

FT -10 Pbe(l00 + ̂ a) (for metric SA constants) eq-4 
SA{l00-Pbe)Gb 

where: Pba = percent (by aggregate weight) of absorbed asphalt binder 

All three of the film thickness equations presented above will give you the same value 

expressed in microns, provided you are using the appropriate SA value. The film thickness value can 

be easily determined using any of today's HMA mix design software packages. There is, however, 

another film thickness equation that is commonly used, but further generalizes the value. Equation 5 

shows a simplified version of Equation 2 where the percent aggregate is assumed to be 100 and the 

binder specific gravity is 1. This was a common version used before the laboratory technicians had 

calculators. The film thickness value resulting from Equation 5 will always be slightly smaller than the 

other computed values. 

Pbe 
FT = 10-^- (for metric SA constants) eq-5 

In all of the film thickness equations identified above and nearly all the research that 

examines the film thickness value, one factor is used without any question about its origin or 

accuracy. That is the surface area of the gradation. All film thickness equations use the surface area 

factors developed in the mid-1900's. Where did these factors come from? And are they valid for all 

mixtures? 

The current procedure for determining surface area was outlined in the Asphalt Institute 

Manual in 1956 as part of the Hveem mix design method. The procedure requires only one set of 

input values to determine the surface area of the total aggregate blend. The input is the gradation 

expressed as the total percent (by weight) passing on each sieve. Each percent passing, from the 

4.75-mm sieve down, is multiplied by a surface-area factor. A constant for the coarse aggregate plus 

the sum of the products for the fine aggregate is the surface area of the total blend. The original 

procedure was developed in English units to compute a surface area in square feet per pound of 

aggregate blend. Later versions converted the procedure into metric units to compute a surface area 

in square meters per kilogram of aggregate and combined the 0.075-mm and 0.053-mm sieve 

factors. This study uses the metric version without the 0.053-mm sieve factors. 
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The surface-area factors are multiplied by the gradation expressed as total percent passing. 

Using the gradation in terms of the total percent passing means that each value represents all 

particles smaller than that sieve. Therefore, the surface area values are not a direct expression of 

total surface area for aggregate particles on a specific sieve. Further, the determination of surface 

area does not account for differences in the specific gravity of the aggregate. Simply stated, the 

volume of 100 kg of aggregate with a specific gravity of 2.5 is greater than the volume of 100 kg of 

aggregate with a specific gravity of 2.8. If we compare the two mixtures, the resulting film thickness 

values only express differences between the mixtures based on the gradation and all particles are 

treated as having the same specific gravity. 

The current method for computing surface area does not adjust for the differences in the 

specific gravity of the aggregate. The literature does not address why the adjustment for aggregate 

specific gravity was omitted. The Hveem mix design nomographs for determining the asphalt binder 

content adjust the aggregate surface area value by the aggregate specific gravity. Campen's work on 

film thickness uses the same surface area tables, but does not make this adjustment. 

This is a critical limitation of the current procedure for computing film thickness. Studies that 

examine differences in film thickness values in an attempt to identify trends in HMA mixture 

performance are not comparing equivalent film thickness values when the mixtures have aggregates 

with dissimilar specific gravities. If a research study uses a single aggregate source for the entire 

gradation and simply changes the gradation for the purposes of the study, then the film thickness 

comparisons are valid. But when the study examines multiple mixtures from multiple sources with 

different aggregate specific gravities, then the film thickness comparisons are not valid. 

Even under the accepted norm that the film thickness value is an index and not a true 

measure of the asphalt binder film, the procedure for computing the film thickness value should 

account for known characteristics of the aggregate. This may lead to a better understanding of the 

impact of film thickness on mixture performance. 

New Approach 

Using Equation 2 as the current standard for computing film thickness with metric surface 

area factors, how do we build a better procedure to compute film thickness? The four variables in the 

equation are logically paired. The percent effective binder (Pbe) is paired with the specific gravity of 

the binder (Gb) to compute the volume of asphalt binder. The percent aggregate (Ps) is paired with 

the gradation's surface area (SA) to compute the total surface area of the particles in the mix. The 

volume of effective asphalt binder is well defined by the relationship of the weight and specific gravity. 

Provided the effective asphalt binder content is determined from an accurate measurement of the 

mixture's theoretical maximum specific gravity, the volume of the asphalt used to compute the film 

thickness is as accurate as possible. The percent aggregate in the mix is also easy to measure. It 
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can be easily expressed as 100 minus the percent, by weight, total asphalt binder (100-Pb). What 

remains is the need to obtain a better value for the surface area of the aggregate. 

Prior to the use of calculators and computers to develop HMA mix design and compute 

volumetric properties, engineers developed charts, tables and nomographs to simplify the 

calculations. The current surface area factors are a product of that philosophy. Now that 

spreadsheet programs are readily available, there is no reason to simplify the procedure for 

determining the HMA mixture's aggregate surface area. The proposed procedure uses the 

fundamental principles of weight, volume, specific gravity, and particle geometry to calculate a 

theoretical surface area of each aggregate particle. The surface area of the gradation is the 

summation of all the individual particle surface areas. 

This approach can be further improved by using theoretical techniques to place the particles 

in a virtual three-dimensional model and examine the spatial relationship between particles. Boris 

Radovskiy introduced this technique as an alternative method to calculate the thickness of the asphalt 

mastic (binder and some mineral filler) between aggregate particle spheres and the air void space 

(15). In his procedure, the mineral filler (particles passing the 0.075-mm sieve) is further separated 

into a dense gradation using the 0.5-power function. This distributes the mineral filler from the 0.075-

mm sieve down to the 0.005-mm sieve. The proposed approach in this study for calculating film 

thickness uses the theoretical model, but does not apply the 0.5-power function to distribute the 

mineral filler. The mineral filler gradation will be discussed in more detail later. 

When we use this theoretical three-dimensional model, the need to compute the surface area 

of the particles is eliminated. The model applies geometric principles to determine the thickness of 

the asphalt mastic volume from the particle surface to air void space. The model recognizes and 

accounts for the different particle-to-particle dimensions such that the asphalt mastic fills the volume 

between closely spaced particles. 

In theory, this three dimensional model achieves a film thickness value that approaches the 

true film thickness. If our primary interest in film thickness is to define the durability of the mixture, 

then the nominal thickness of the asphalt between the aggregate surface and the void space 

represents the minimal depth of exposed coating where binder aging occurs. 

A new approach to measuring film thickness must account for today's common practices in 

proportioning HMA mixture components to satisfy the mix design criteria. The procedure should 

recognize that the aggregate gradation is a blend of multiple aggregates from different sources. Most 

of the aggregate sources will likely have a different specific gravity. Each aggregate source has a 

different gradation that typically plays a specific role in building the gradation and structure of the 

mixture. Each aggregate source has a unique set of particle shapes and surface textures. 

The combined gradation plays a role. Mixtures that are coarse-graded rely on the fine 

aggregate and asphalt binder as a mastic to fill the space between the larger particles. Mixtures that 
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are fine-graded are composed of a fine aggregate structure and the coarse particles simply float in 

the mixture. Studies have concluded that coarse-graded and fine-graded mixtures will have different 

durability characteristics. 

Construction practice, particularly the as-constructed density, is a factor. Mixtures 

compacted to 8% air voids have more exposed asphalt binder film than mixtures compacted to 4% air 

voids. Typical dense-graded mixtures are compacted to 6% to 8% voids in normal paving operations. 

Open-graded surface mixtures are compacted to 12% to 15% voids to permit drainage. We know 

that these open-graded mixtures require thicker binder films to retard mixture aging. 

The proposed procedures generate two different film thickness values as shown in Figure 1. 

The first is an extension of the past practice of a uniform coating "index" and the second is a new 

value based on a "virtual" three-dimensional model. Both procedures account for multiple aggregate 

sources, including differences in gradation and specific gravity. The INDEX Model can also account 

for particle shape, but cannot reflect the impact of as-constructed air voids. The VIRTUAL Model 

does account for as-constructed air voids, but does not adjust for different particle shapes. It is 

possible for the INDEX Model to account for differences in the film thickness of coarse and fine 

aggregate, but there are no studies to guide what those values would be. How the two proposed film 

thickness values reflect pavement performance is examined in the second phase of this study. 

The INDEX Model 

The film thickness INDEX model is a simple procedure to develop. After establishing a matrix 

of the gradations for each of the individual aggregate sources in an HMA mixture, the procedure 

determines the retained weight of particles from each source on each sieve based on a 1000 gr total 

aggregate batch weight. Each retained weight is converted to a total retained volume using the 

Standard Model 
INDEX Model VIRTUAL Model 

equal & uniform coating aggregate surface to air void 

Figure 1 - Differences in Proposed Film Thickness Models 
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specific gravity for that source. The retained volume on each sieve in the matrix is then converted to 

the number of particles using an average particle volume. The average particle volume is based on 

the upper and lower sieve dimensions and the nominal particle shape. Once the number of particles 

is determined, the procedure multiplies that particle count by the surface area of each average 

particle to establish the total surface area of the particles retained on each sieve for each source. 

These values are all combined into the total surface area for the 1000 gr aggregate blend. A constant 

value is included to adjust the combined surface area value to square meters of surface area per one 

kilogram of aggregate. The computed surface area value is inserted into the standard metric film 

thickness equation. 

The equations to step through the film thickness INDEX model are shown below. Equation 6 

determines the volume retained on each sieve for each source of a 1000 gr batch. Equation 7 

establishes the volume of each average particle. Equation 8 establishes the surface area of each 

average particle. Equation 9 combines Equations 6, 7, and 8 into the calculated surface area of the 

particles retained on a specific sieve for each source. Equation 10 inserts this new surface area 

equation into the film thickness INDEX equation. 

^(0 PS(i)(n) ) 

^(0(n) " 
100 100 

Gsb, (0 
*1000 (cm3) eq-6 

4 
—n 
3 

// 
D(„-1) + D(n) 

, \ 3  

*yp 
('X") 

1000 
(cm3) eq-7 

f r D(n-1) + D(n) 
\ 

vv 

\ 

2 
y ) 

* SAF, WW (mm 

SA, OX") 

0.0012*PcU) -Ps )*SAF(  

Gsb( l )  * (p(n i) + D(n)  )* VF( i ) (n)  

(»)(") 
(m /kg) 

eq-8 

eq-9 

FT, = 1000 
Pbe 

(microns) eq-10 

where: Vs(i)(ri) = total volume of aggregate of the i* source retained on the n* sieve 
Pc(i) = the percent (by aggregate weight) of the ith source 
PS(i)(n) = the percent (by source wieght) of the ith source passing the nm sieve 
Gsb(i) = the bulk specific gravity of the aggregate from the ith source 
Vp(n) = the volume of an average particle on the nth sieve 
D(n) = nominal opening of the nh sieve (mm) 
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VF(i)(n) = volume factor for the particles from the ith source on the n,h sieve 
SAp(n) = surface area of the average particle on the nth sieve 
SAF(i)(n) = surface area factor for the particles from the i,h source on the nth sieve 
SA(i)(n) = total surface area of the particles from the ith source on the nth sieve 
FT, = film thickness of the mixture, INDEX Model 
Pbe = percent (by mix weight) of the effective asphalt binder 
Ps = percent (by mix weight) of the aggregate 
Gb = specific gravity of the asphalt binder 

To determine the volume and surface area of each particle, the user must decide what the 

nominal particle shape is for that aggregate source. The shape factors (VF and SAF) convert the 

volume and surface area from a uniform sphere to the desired particle shape. The dimensions of the 

spheres are based on the sieve screen openings. As the particle changes to a cubical shape, the 

dimensions are changed to account for the ability of a square particle to randomly pass through a 

square opening. For this proposed procedure, the volume of spherical particles and cubical particles 

retained on the same sieve have approximately equal volume. The volume and surface area factors 

were derived from the geometric calculations in Table 1. 

Table 1 - Particle Shape Factors 

Particle Shape 
Particle 
Volume 
(mm3) 

Volume 
Factor 

Particle 
Surf. Area 

(mm2) 

Surface Area 
Factor 

Sphere • (22 mm dia) 
-base geometric value-

5,575 1.0 1521 1.0 

Sphere 2:1 (•> 13,938 2.5 3041 2.0 
Sphere 3:1 22,301 4.0 4562 3.0 

Cube • (17.67 mm edge) 5,525 1.0 1875 1.2 
Cube 2:1 •• 11,050 2.0 3125 2.1 
Cube 3:1 ••• 16,575 3.0 4375 2.9 

The input for the proposed INDEX Model film thickness actually requires three pairs of 

volume and surface area factors for each aggregate source. In many cases all three values will be 

the same, but it may be appropriate for those values to change for an aggregate source as the 

particles decrease in size. The three pairs of volume and surface area factors allow the mix designer 

to distinguish between coarse-aggregate, coarser fine-aggregate, and finer fine-aggregate. There are 

no established test procedures to determine these values. The mix designer must examine the 

coarse and fine proportion of each source and judge its nominal particle shape. 

Selection of the mineral filler gradation requires special attention. A large portion of the 

aggregate surface area is attributed to the mineral filler. Based on previous studies of baghouse 

fines, the designer has the choice of selecting a coarse, dense, or fine mineral filler gradation. For 

this study, the surface area of particles less than 10 micron size is not included in the film thickness 
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determination. These very small particles are treated as a binder extender. Depending on the 

mineral filler gradation selected, the amount of mineral filler treated as binder extender ranges from 

25 to 70 percent. The INDEX Model, however, does not add the mineral filler extender volume to the 

effective binder volume for computing the film thickness. The impact of the mineral filler on the film 

thickness value is very significant and is discussed in detail later in this chapter. 

Equation 10 represents the proposed INDEX Model for determining the film thickness. The 

focus of the model is a logical sequence of calculations to determine the surface area of each 

aggregate particle. It requires the input of the gradation, specific gravity, and particle shape of each 

aggregate source. The resulting aggregate surface area is a better approximation of the true surface 

area because it accounts for these differences between aggregate sources. However, it is still an 

"index" of the mixture's film thickness. Equation 10 measures the thickness of the asphalt film with 

the simplification that the surface area coated by the asphalt binder is a flat surface, not three-

dimensional particles; and, each particle is separately and uniformly coated. 

These two simplifications of the INDEX Model are very significant. Converting each particle's 

surface area to a flat plane greatly reduces the coated volume from a three-dimensional shell to a 

two-dimensional film. As the ratio of particle diameter to film thickness gets smaller, the impact of 

converting the surface area from a shell to a plane surface increases. For smaller particles, the 

computed two-dimensional film thickness is significantly larger than the actual three-dimensional 

binder shell thickness. This is easily demonstrated in Figure 2. A detailed discussion of this impact is 

given later in this section. 

The simplification of separate and uniformly coated particles is also significant, but much 

more difficult (if not impossible) to quantify. We know that each particle is not uniformly coated. 

Further, the particles are compacted into a three-dimensional orientation and relationship by particle 

size. In coarser gradations, we expect the coarse particles to have direct contact with each other to 

build the aggregate skeleton. That same point-to-point relationship is less understood for the fine 

aggregate and mineral filler. In general terms, treating the film thickness as a separate and uniform 

coating gives a more conservative result (smaller film thickness). 

The VIRTUAL Model 

To achieve a better approximation of the asphalt film thickness, this study developed a 

derivation of Radovskiy's approach (15) to account for both the three-dimensional surface area of 

each particle and for the spatial relationship between particles in the mixture. In addition, the spatial 

relationship of the VIRTUAL Model can account for differences in compacted voids. The primary 

restriction of the VIRTUAL Model is that it cannot account for different particle shapes. This 

theoretical particle distribution model is based solely on spheres. 
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Three-Dimensional Shell Thickness 
0.085 mm diameter particle 0.012 mm diameter particle 
0.008 mm film thickness 0.008 mm film thickness 
0.0067 mm shell thickness 0.0044 mm shell thickness 

Two-Dimensional Film Thickness 

Figure 2 - Comparison of 3-D and 2-D Aggregate Coating 

Similar to the proposed INDEX Model, this study treats all mineral filler smaller than 10 

microns as a binder extender in the proposed VIRTUAL Model. This treatment of mineral filler does 

not conform to the approach taken by Radovskiy. His procedure requires analysis at individual 0.001 

mm increments to determine the extender portion. Radovskiy's procedure treats all particles smaller 

than the calculated film thickness as part of the asphalt binder (as an asphalt extender) and includes 

that volume into the binder volume. In the proposed VIRTUAL Model, all particles smaller than 0.010 

mm are treated as extender and the extender volume is added to the binder volume. Other 

modifications to Radovskiy's procedure account for specific gravity differences of the individual 

sources included in the aggregate blend and applies the same approach to mineral filler gradation 

used for the INDEX Model. 

The VIRTUAL Model requires knowledge of the HMA mixture volumetrics, as well as 

knowledge of the aggregate and binder proportions. The central equation of the model is given as 

Equation 11. It combines the film thickness (t) and particle distribution relationships (a,, a2, a3) and 

equates the sum of those values to a relationship of the adjusted VMA (1 -Vs) to air void volume (Va). 

The particle distribution relationships (a^ a2, a3) create the virtual three-dimensional aggregate model. 

Equations 12,13, and 14 are used to determine the "a" values. In theory, these values would change 
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as we adjust the amount of mineral filler that acts as an asphalt extender. In the proposed VIRTUAL 

Model these three values remain constant for a given gradation because the definition of asphalt 

extender is fixed. The other variable (q) in Equations 12,13, and 14 is a ratio of the effective 

aggregate particle volume (Vs) to the adjusted VMA volume. The "effective" aggregate volume is 

determined by Equation 15 and accounts for the mixture's measured VMA and the volume portion of 

the gradation that is treated as asphalt extender (Vext = PoWGsb). Equation 16 computes the 

volume of air (Va) using the volumetric relationships for VMA, the total and absorbed binder, and the 

specific gravities of the asphalt binder and aggregate. 

f 
a{t + a2t + a3f = In 

1 -Vs 

Va 
eq-11 

a,  =6 q-
m, 

eq-12 

m, 
ti2 - 12g—- + 18g 

m. 

m, 
eq-13 

a3 = 8q-^— + 24q 
m. 

2 m,m2 
+ 16 q 3 

m. 

Vs = (] - VMÀ)* (l - Vext) 

ffl, 
eq-14 

eq-15 

Va = 1 
( 1 -VMA"\ 

1 + * 1 + I 100 
J 

r % 
100 Pba 

V '-%o 100 

Gsb 

Gb 
eq-16 

where: t = FTV - film thickness, VIRTUAL model (mm) 
a, = first particle distribution (1/mm) 
a2 = second particle distribution (1/mm2) 
a3 = third particle distribution (1/mm3) 
Vs - fraction (by mix volume) of the effective aggregate 
Va = fraction (by mix volume) of the air voids 
mi, m2, m3 = particle moments, defined by Eqs 18,19, & 20 (mm, mm2, mm3) 
q = Vs/(1 -Vs) 
VMA = voids in the mineral aggregate 
Vext = percent (by aggregate volume) of particles passing 0.010-mm sieve 
Pb = percent (by mix weight) of the total asphalt binder 
Pba = percent (by aggregate weight) of the absorbed asphalt 
Gsb = bulk specific gravity of the aggregate (weighted for proportion of sources) 
Gb = specific gravity of the asphalt binder 
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Equation 6 and 7 used in the INDEX Model procedure also apply to the VIRTUAL Model. 

The input parameters related to the gradation and specific gravity for each aggregate source are used 

to determine the number of particles on each sieve. The same sequence is applied to convert 

retained weight to retained volume; and, divide the retained volume by the average particle volume. 

Equation 17 expresses the number of particles on a specific sieve for each source. Unlike the INDEX 

Model, we cannot apply shape factors to represent various particle shapes. In the VIRTUAL Model, 

all particles are treated as spheres. After the number of particles is computed on each sieve for each 

source, the total number of particles on each sieve is determined. The number of particles on each 

sieve is converted to a fraction of the total number of particles in the gradation, less the mineral filler 

acting as asphalt binder extender. The procedure uses Equations 18,19, and 20 to compute the 

particle moments (m,, m2, m3) based on the average particle diameter and fraction of particles 

retained. The summations of the particle moments on each sieve are the input values for the particle 

distribution relationships, a-,, a2, and a3 in Equations 12, 13, and 14. 
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Eq-18 

Eq-19 

Eq-20 

where: Ns(i)(n) = number of aggregate particles from the ith source retained on the nth sieve 
Pc(i) = the percent (by aggregate weight) of the ith source 
Ps(i)(n) = the percent (by source wieght) of the ith source passing the nth sieve 
D(n) = nominal opening of the nth sieve (mm) 
Ns(n) = particle count on the nth sieve for all sources 
£Ns(n)(i) = total particle count, all sieves and sources 
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Once the aggregate relationships are determined, the other input parameters related to the 

asphalt binder and mixture volumetrics are applied to solve Equation 11. Three input values (Pb, 

Pba, and Gsb) are used to define the volume of effective asphalt binder. The other input value is the 

mixture's measured VMA. Applying the binder input values is straight forward provided the correct 

base value is used. Total percent binder (Pb) is based on total mixture weight and percent binder 

absorbed (Pba) is based on total aggregate weight. 

Selecting the proper measured VMA requires an understanding of the level of compaction 

when the VMA was measured. Most mix design summaries focus on the volumetric properties at 4% 

air voids. The VIRTUAL Model can determine the film thickness at any air void level, so the 

measured VMA must be adjusted to the desired air void level. Computing the correct VMA can be 

accomplished using Equation 21. Equation 21 starts from a known VMA and air void relationship for 

a mixture. The VMA value used for input in the VIRTUAL Model must coincide with the level of 

compaction that the film thickness represents. 

1 , V a i  ~ V a o)  
100 

where VMA, = computed (adjusted) VMA (percent) 
VMA0 = measured (initial) VMA (percent) 
Va, = computed (target) air voids (percent) 
Va0 = measured (initial) air voids (percent) 

When all the aggregate, asphalt binder, and mixture volumetric inputs are defined, we can 

solve Equation 11 for film thickness (t). The VIRTUAL Model uses a simple approach to determine 

the value "t" in Equation 11. The Solver Function in the Excel software generates an interactive 

process to find a value for "t" that gives a correct solution to the equation. Unfortunately, the Solver 

Function must be manually initiated, so the individual using the VIRTUAL Model must be familiar with 

this spreadsheet tool. 

In summary, both the INDEX Model and VIRTUAL Model begin the procedure of computing 

the film thickness by determining the number of particles retained on each sieve. This step divides 

the gradation by each source to account for the differences in aggregate specific gravity. The INDEX 

Model converts the number of particles to particle surface area and applies the volume of effective 

asphalt to the total surface area as a thin sheet on a two-dimensional plane. The VIRTUAL Model 

places the aggregate particles in a three-dimensional matrix, fills the void space with effective 

asphalt, and measures the thickness of the asphalt from the particle surface to the air void space. 
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Comparison of Existing and New Equations 

So what do we achieve with either the INDEX Model or VIRTUAL Model? And what input 

variables of each model have the greatest impact on the computed film thickness? To address these 

questions, this study ran a series of analyses on a family of generic mixes and examined the 

differences between the current film thickness "Standard Model" (Eq 2), the proposed INDEX Model 

(Eq 10), and the proposed VIRTUAL Model (Eq 11). The generic mixes represent a series of 

gradations, from fine to coarse graded. Figure 3 shows the combined gradation of each mixture and 

Table 2 gives the input data of each mixture. For simplicity, the sensitivity study uses a single source 

gradation. 
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Figure 3 - Family of General Gradations 

Table 2 - Mixture Properties for Gradations A - E 

GRADATION Va VMA Pb Pbe Gb Gsb 
A 4.0 14.5 5.6 4.5 1.035 2.550 
B 4.0 14.0 5.6 4.5 1.035 2.550 
C 4.0 13.5 5.6 4.5 1.035 2.550 
0 4.0 14.0 5.6 4.5 1.035 2.550 
E 4.0 14.5 5.6 4.5 1.035 2.550 
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The sensitivity study of the VIRTUAL Model is not precise due to the inclusion of the 

volumetric properties. For example, we would not expect the VMA of all five gradations to be the 

same. In reality, these values would need to be determined from the measurement of laboratory 

prepared mixes. For the sensitivity study, the volumetric properties for each gradation are based on 

reasonable judgment, not laboratory measurement. 

Impact of Individual Variables 

•Gradation 
The five gradations developed for this sensitivity study represent a typical range of 

gradations. The common elements of the gradations are the NMAS, the percent passing the 0.075-

mm sieve, and the gradation of the MF. The differences between the gradations are the coarseness 

of the blend. Gradations A and B are generally defined as fine gradations and gradations D and E 

are defined as coarse gradations. Gradation C might be classified as a dense gradation following the 

0.45 Maximum Density Line. A summary of the film thickness values for each of the gradations are 

shown in Figure 4. 
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Figure 4 - Sensitivity of Film Thickness to Gradation 

Starting with the Standard Model, the film thickness increases as the gradations change from 

fine blends to coarse blends. There is approximately a 3-micron change in the film thickness over the 

five gradations. This increase in film thickness coincides with the general expectation that the total 

surface area of the particles in each blend is decreasing as larger particles (less surface area) 

replace smaller particles (more surface area). The Standard Model is based on the aggregate 

specific gravity (Gsb) of about 2.44 (15). 
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The INDEX Model at the aggregate specific gravity of 2.45 shows a similar increasing trend, 

but the film thickness is about 0.4 microns to 0.75 microns greater then the Standard Model 

depending on the gradation selected. There is one major factor contributing to the increased film 

thickness value. The INDEX Model treats all mineral filler less than 0.010 mm as asphalt binder 

extender, so there are fewer mineral filler particles with a high surface area to include in the total 

aggregate surface area. Using the dense mineral filler gradation constants, only half (50%) of the 

mineral filler is included in the surface area of the gradation blend in the INDEX Model. 

The VIRTUAL Model shows a similar increasing trend for the fine graded blends, but the 

trend becomes relatively flat as the gradation becomes coarser. At a Gsb of 2.45, which is similar to 

the Gsb used for the Standard Model, the VIRTUAL Model is 0.6 microns higher for Gradation A, 

narrows to 0.2 microns for Gradation C, and is 0.8 microns lower for Gradation E. It appears that the 

visual break in the trend at Gradation C reflects the difference in the shape of the gradation curves 

(the general distribution of the particles). The finer gradations are generally concave and the coarse 

gradations are more convex relative to the maximum density line. 

Another way to associate this trend change in VIRTUAL film thickness to the gradation is to 

look at the change in the ratio of the fine aggregate portion of the gradation blend. The ratio of the 

total percent passing the 4.75-mm sieve to the total percent passing the 0.600-mm sieve expresses 

the slope of the fine aggregate. Just as the film thickness increased for the fine gradations and 

remained level for the coarse gradations, Figure 5 shows the ratio (slope) of the fine aggregate 

increased for fine gradations and remained level for coarse gradations. This association between the 

gradation and film thickness may reflect the transition from a fine aggregate structure (with floating 

coarse aggregate) to a coarse aggregate structure (skeleton) with a fine aggregate/asphalt binder 

mastic. All particles in the fine gradation blend are "equally" involved in the binder thickness; where 

as, the binder volume for the coarse gradations is a function of the mastic volume in the coarse 

aggregate skeleton. 

In general terms, the INDEX Model reflected a similar pattern of film thickness change as the 

Standard Model. The VIRTUAL Model gives a similar pattern for fine aggregate gradations, but gives 

a dramatically different film thickness result for coarse gradations. 

• Specific Gravity 

As discussed earlier in the study, the Standard Model does not directly account for differing 

aggregate specific gravities. The INDEX Model and VIRTUAL Model require aggregate specific 

gravity input values to determine the film thickness. The five generic gradations were analyzed at 

four aggregate specific gravities ranging from 2.45 to 2.75. To simplify the analysis, the asphalt 

binder content, by weight, (Pb and Pbe) was held constant. Figure 6 graphically displays the impact 

of varying aggregate specific gravity. As expected, film thickness increases as aggregate specific 
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gravity increases. Since the weight (and volume) of asphalt binder remains constant, the number of 

particles retained on each sieve decreases since each particle weighs more. With fewer particles 

retained on each sieve, the surface area of the gradation is smaller. The reduction in surface area 

coupled with a constant binder volume increases the film thickness. 

Because the sensitivity analysis holds the weight (and volume) of the asphalt binder constant, 

the impact of Gsb is not entirely accurate for the Standard Model and INDEX Model. While the 

Standard Model does not directly account for Gsb, it does reflect the impact of varying Gsb through 

the Pbe and Pb terms in the equation. A true analysis of the impact of Gsb would need to be based 

on equal mixture volumetrics with varying Gsb. To achieve equal mixtures, the binder and aggregate 

volumes of each mixture would need to be equal, not the weight proportions. The analysis of the 

impact of Gsb in Figure 6, above, is based on equal binder volume only. The analysis holds the Pb 

and Pbe constant, so the aggregate weight proportion to binder weight proportion is held constant. 

But in fact, if the weight of aggregate is held constant as the Gsb changes, then the volume of 

aggregate in the analysis is changing. If the volume of aggregate is changing, then the mixtures are 

not truly equal. 

To look at the impact of Gsb on an equal volume (mix proportion) basis, an analysis was 

performed to see how the Standard Model would react to varying Gsb. To achieve an equal 

aggregate volume for each mixture, the aggregate volume at the baseline Gsb is converted to an 

aggregate weight using the new Gsb. A new Pbe is calculated from the revised mixture weight 

values (Equation 22). A new Pb value is then determined from the new Pbe value (Equation 23). 

Since the revised Pbe and Pb values are intended to reflect mixtures with equal binder and aggregate 

volume, we should expect the computed film thickness values to be equal. However, as shown in 

Figure 7, the computed film thickness using the Standard Model shows a decreasing film thickness as 

the Gsb increases. In general terms, the values in Figure 7 show that the Standard Model will 

calculate a smaller film thickness as the aggregate specific gravity increases. 

Pbe, (0) 
Pbe Eq-22 

Pb, (0) 
f x Eq-23 

(0) 

where: Pbe = percent effective asphalt binder 
Gsb = bulk specific gravity of the aggregate 
Pb = percent total asphalt binder 
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on an Equal Material Volume Basis 

The proposed INDEX Model applies the same basic film thickness equation as the Standard 

Model. The equation uses Pbe and Gb to determine the asphalt binder volume. For mixtures 

compared on an equal volume basis, the Pbe value will decrease as the mixture Gsb increases. 

However, the surface area factors computed as part of the INDEX Model change as the aggregate 

specific gravity changes. Using the same adjustments to the Pbe and Pb as the Gsb changes, the 

INDEX Model correctly computes the same film thickness for two mixtures with equal binder and 

aggregate volumes, but different aggregate specific gravities. This demonstrates the value of the 

basic revisions in the INDEX Model over the Standard Model. 

Figures 6 and 7 are mirror images of the same analysis. Both look at the impact of the 

change of aggregate specific gravity on the computed film thickness. While Figure 6 would imply that 

the INDEX Model and VIRTUAL Model would increase the film thickness, the more realistic scenario 

is Figure 7 which indicates that the Standard Model underestimates the film thickness as the 

aggregate specific increases. 

• Mineral Filler Content and Gradation 

The Standard Model and INDEX Model for film thickness are based on determining the 

surface area of the aggregate particles. As the particle size gets smaller, the impact of the particle 

surface area increases dramatically. Conventional aggregate gradation testing for HMA mixtures 

typically stops at the 75-micron sieve. For purposes of this study, the material passing the 75-micron 

sieve is called mineral filler. Most HMA mix designers have no detailed information on the 

composition of the mineral filler. And yet, it is the gradation of the mineral filler that has a significant 

impact on the surface area calculated by the Standard Model and INDEX Model. The study 
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examined a spectrum of mineral filler gradations and established a fine, dense and coarse mineral 

filler gradation for purposes of this study. 

The Standard Model bases its film thickness determination on the surface area factors 

developed by Hveem. The surface area factors are fixed constants and the entire mineral filler 

proportion is included in the film thickness calculation. The INDEX Model and VIRTUAL Model limit 

the amount of mineral filler acting as aggregate particles. The analysis used by Radovskiy defined 

the mineral filler that acts as binder extender as those particles with diameters less than the 

computed film thickness. This requires an interactive process to compute the film thickness and 

establish the mineral filler acting as binder extender. Since we know very little about the actual 

gradation of the mineral filler, the INDEX Model and VIRTUAL Model define the mineral filler extender 

as all particles less than 10 microns (0.010 mm). Fixing the definition of the binder extender 

simplifies the model. A film thickness of 10 microns is commonly observed for mixes in Iowa and is 

supported by the analysis in Chapter 5. 

There are two questions relative to the impact of the mineral filler on film thickness. How 

does the amount of mineral filler change the film thickness and how does the gradation of the mineral 

filler impact the film thickness? To examine the question of mineral filler quantity, the gradation of the 

aggregate and mineral filler were held constant and the amount of mineral filler was increased from 

4.5 percent to 7.5 percent. Figure 8 shows the computed film thickness values for all three film 

thickness calculation models. The graph shows that all three models react similarly to the quantity of 

mineral filler. A one percent change in the amount of mineral filler changed the film thickness by 

approximately 0.5 micron. 
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Figure 8 - Sensitivity of Film Thickness to Mineral Filler Quantity 
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To examine the impact of the mineral filler gradation, the fine, dense and coarse mineral filler 

gradations were developed from mineral filler particle distributions studied by Anderson and Tarris 

(17). These gradations were applied to aggregate gradation C and 6 percent mineral filler quantity. 

Figure 9 shows the significant impact of changes to the mineral filler gradation. As expected, the 

Standard Model does not show any change in film thickness because the surface area factors do not 

extend below the 0.075-mm sieve. Both the INDEX Model and VIRTUAL Model reflect the impact of 

mineral filler gradation. There is a 4 micron film thickness difference between the fine and coarse 

mineral filler gradations. Because the INDEX Model and VIRTUAL Model treat a portion of the 

mineral filler as asphalt binder extender, the change in film thickness values reflect the amount of 

mineral filler that is considered aggregate particles. For the coarse mineral filler gradation, 75 percent 

of the mineral filler is considered aggregate particles. For the fine mineral filler gradation, only 30 

percent of the mineral filler is part of the aggregate. We could conclude from these differences that 

the mineral filler gradation should be measured. However, is it practical to specify this level of 

gradation analysis? 

Another aspect of the mineral filler sensitivity study is the difference between the INDEX 

Model and VIRTUAL Model regarding the treatment of the mineral filler that is defined as binder 

extender. Since the VIRTUAL Model adds the volume of mineral filler extender to the asphalt binder 

volume, we might expect a noticeable increase in film thickness as the amount of mineral filler 

extender increases. At the coarse mineral filler gradation (with only 25% extender), the difference 

between the INDEX Model and VIRTUAL Model film thickness is approximately 0.2 microns. At the 

fine mineral filler gradation (70% extender), the difference is approximately 0.6 microns. These 

results show a change of about 0.4 microns that is attributed to how the mineral filler extender is 

addressed in the models. The study defines mineral filler acting as asphalt binder extender as any 

particle smaller than the film thickness. It is not the focus of this study to examine the details of the 

characteristics of binder extender. The film thickness models could be further refined by a better 

understanding of how mineral filler acts as an asphalt binder extender. 

In general, all three models show that a change in mineral filler content of one percent will 

change the film thickness approximately 0.5 micron. The gradation of the mineral filler has a 

significant impact on film thickness when either the INDEX Model or VIRTUAL Model are used, but 

the practicality of measuring mineral filler gradation may limit the use of this feature. 
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Figure 9b - Sensitivity of Film Thickness to Mineral Filler Gradation 

• Particle Shape 

The VIRTUAL Model is based solely on the geometric configuration of spherical particles and 

the Standard Model is believed to originate from gravel (spherical) shapes. The INDEX Model is the 

only model that has the ability to account for differences in particle shape. These differences include 

spherical to cubical shape and elongation. The INDEX Model makes some assumptions to relate 

particle shapes to the probable size of particles on a specific sieve. The two principle assumptions 

are the volume of a cubical particle is approximately equal to the volume of the spherical particle on 
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the same sieve and that elongation is not a factor in determining the retained sieve. For example: a 

spherical particle retained on the 12.5-mm sieve would have a volume of 2046 mm3. The equivalent 

cubical particle has a volume of 2027 mm3. If these particles have an elongation factor of 2:1, the 

longest dimension would be greater than the next larger sieve (19.0-mm), but the particles would still 

be analyzed as part of the 12.5-mm retained proportion. 

To examine the question of particle shape, the gradation C proportions with 6 percent mineral 

filler was examined for both spherical and cubical shape and for up to 3:1 elongation. Figure 10 

shows the results of the analysis. As expected, there is no change in the Standard Model or 

VIRTUAL Model values when either shape or elongation are changed. The results of the INDEX 

Model show that the film thickness of spherical shape particles is higher than cubical shaped 

particles. This follows the basic geometric principle that the sphere is the most efficient volumetric 

shape. To achieve the same particle volume, a cubical shape generates more surface area and will 

result in a lower film thickness. At a 1:1 elongation factor, the spherical gradation created 0.6 micron 

more film thickness than the same gradation with cubical shaped particles. 
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Figure 10 - Sensitivity of Film Thickness to Aggregate Shape and Elongation 

The INDEX Model shows a general increasing trend in the film thickness value as the 

elongation increases. The increase is greater between 1:1 and 2:1 elongation, than between 2:1 and 

3:1 elongation. This trend supports the impact of elongation. As particles become elongated, the 

amount of surface area for a unit of particle volume decreases. As the surface area decreases, the 

film thickness increases. If an aggregate source has a degree of elongation and the source is a large 

fraction of the mixture, the film thickness will likely increase. 
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In general, particle shape and elongation will impact the film thickness of the mixture. 

Mixtures with higher amounts of crushed (cubical) particles have a lower film thickness than mixtures 

composed of round gravel (spherical) particles. On the other hand, mixtures with substantial amounts 

of elongated particles will have a higher film thickness. It should be added here that these observed 

conclusion do not imply any recommendation to make mixtures more spherical and elongated to 

achieve film thickness. 

• Air Voids - VMA - Degree of Compaction 

The input values for the equations of the Standard Model and INDEX Model are generally 

weight proportion relationships, percent binder by weight and surface area by weight. These models 

compute a theoretical film thickness without regard to the orientation of the particles. The VIRTUAL 

Model does account for the spatial relationship between particles and the input includes the VMA of 

the mixture. How does a change in the VMA impact the computed film thickness? To examine this 

question, a model mixture was established using Gradation C and general volumetric relationships 

from a comparable real mixture. To develop a set of similar mixtures for this impact analysis, the 

VMA was adjusted to reflect changes in the air voids. The aggregate and binder volume are held 

constant, but the increase in air voids creates a similar increase in VMA. For this study, the standard 

air voids of 4 percent was reduced to 2 percent and increased to 10 percent. Figure 11 shows the 

impact of changes to the air voids on the computed value of film thickness. 
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The graph clearly shows that the Standard Model and INDEX Model are not affected by the 

change in air voids. The VIRTUAL Model is impacted by changes to the air voids. Decreasing the air 

voids to 2 percent creates a 1.4 micron increase in film thickness. This is in line with the expectation 

that a reduction of the mixture volume from 4 percent to 2 percent air voids brings the aggregate 

particles closer together, displaces more binder from between particles to fill in the void space, and 

therefore increases the thickness of the binder between the aggregate particles and the remaining 

voids. In theory, if the air voids could be reduced to 0 percent, the film thickness would be infinite. 

As the air voids increased from 4 percent to 10 percent, the calculated film thickness 

decreased by almost 1.0 micron and the rate of change diminished as the air voids moved closer to 

10 percent. This trend is also expected from the VIRTUAL Model. As the mixture is expanded to 

higher air voids, the aggregate particles move further apart. The space between particles requires 

more asphalt binder. 

Both the rapid increase in film thickness as the voids decreased to 2 percent and the slowing 

trend of film thickness decrease as the air voids increased to 10 percent are reasonable changes to 

the film thickness of an HMA mixture relative to the level of density. Through the use of the VIRTUAL 

Model, it would be possible to define the minimum required film thickness on the basis of the level of 

compaction when the mixture is placed, instead of defining film thickness at the conventional 4.0 

percent air voids. While some additional compaction is achieved in the wheel paths, the majority of 

the HMA mixture remains at the initial post-construction level of compaction (air voids). If mixture 

durability is the primary intent of calculating film thickness, then it is appropriate to determine the film 

thickness at the in-place air voids, not 4.0 percent air voids. 

Only the analysis procedure of the VIRTUAL Model is capable of determining the film 

thickness at varying levels of air voids (mixture compaction). As expected, reducing the air voids 

creates a higher film thickness and increasing the air voids lowers the film thickness. The level of 

compaction (air voids) may be an appropriate input for film thickness and would allow the mix design 

to compute the film thickness of the "as-placed" mixture. 

Impact of Blended Aggregates 

Each of the previous sensitivity analyses isolated a specific mixture parameter to see how the 

INDEX Model and VIRTUAL Model would respond to a range of values. This allows the study to 

check the reasonableness of the proposed models. Taking the sensitivity analysis to the next level, 

three parameters were combined to examine the response of the models to a partial "real world" 

scenario. For this analysis, a fine and coarse gradation were developed from four individual sources. 

The sources represented a crushed limestone, clean limestone chip, manufactured sand and natural 

sand. A mineral filler was added as a fifth source for the coarse gradation to bring the mineral filler 

proportion up to approximately 6 percent. The individual sources were proportioned to approximately 
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mirror Gradation A (fine) and Gradation D (coarse). A summary of the fine and coarse gradations is 

given in Table 3 and Figure 12. 

Table 3a - Individual Aggregate Source Gradations 

INDIVIDUAL 
SOURCES 

Total percent passing, by weight INDIVIDUAL 
SOURCES 25 19 12.5 9.5 4.75 1.18 0.6 0-3 0.15 0.075 
Crush 
Limestone 

100 100 90 65 49 36 27 21 17 13 7 

Limestone chip 100 100 100 97 63 19 0 0 0 0 0 
Manufactured 
sand 

100 100 100 100 89 70 32 4 0 0 0 

Natural sand 100 100 100 100 100 91 75 47 25 14 8 

Table 3b - Fine Aggregate Blend Gradation 

Combined 
Gradation 

Total percent passing, by weight 
Combined 
Gradation 25 19 12.5 9.5 4.75 2.36 0.075 Combined 
Gradation 

100 100 96.7 87.8 74.3 55.6 39.1 24.3 | 14.6 | 9.3 5.2 
Source 
proportion 

Individual sieve percent retained, by web ght of total blend Source 
proportion 25 19 9.5 4.75 2.36 0.6 0.3 0.15 |7S|J MF 

Cr. 
LS 33% 0 0 3.3 8.3 5.28 4.29 2.97 1.98 1.32 1.32 1.98 2.31 

LS 
chip 

21% 0 0 0 0.6 7.14 9.24 3.99 0 0 0 0 0 

Man 
Sand 10% 0 0 0 0 1.10 1.90 3.80 2.80 0.40 0 0 0 

Nat 
Sand 36% 0 0 0 0 0 3.24 5.76 10.08 7.92 3.96 2.16 2.88 

Table 3c - Coarse Aggregate Blend Gradation 

Combined 
Gradation 

Total percent passing, by weight | 
Combined 
Gradation 

25 J9_ 12.5 I 9.5 0.6 r03l 0.15 | 0.075 Combined 
Gradation 

100 100 95.7 83.6 60.9 34.2 19.2 | 14.1 11.3 9.2 6.2 

Source Individual sieve percent retained, by weight of total blend 
proportion *-5, 19 12.5 4JB --" 2.36 1.18 0.6 0.3 0.15 75|J 

Cr. 
LS 43% 0 0 4.3 10.7 6.88 5.59 3.87 2.58 1.72 1.72 2.58 3.01 

LS 
chip 45% 0 0 0 1.3 15.3 19.8 8.55 0 0 0 0 0 

Man 
Sand 5% 0 0 0 0 0.55 0.95 1.90 1.40 0.20 0 0 0 

Nat 
Sand 4% 0 0 0 0 0 0.36 0.64 1.12 0.88 0.44 0.24 0.32 

MF 3% 0 0 0 0 0 0 0 0 0 0 0.15 2.85 
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With these two established gradation blends, the analysis expanded to 16 tests for each 

gradation. Each test represents a unique set of the four sources with either a low aggregate specific 

gravity (Gsb = 2.550) or high aggregate specific gravity (Gsb = 2.750). The analysis held the other 

factors constant (binder content, mineral filler gradation, particles shape, & air voids). 

To obtain the volumetric properties for the VIRTUAL Model, the analysis used the Iowa DOT 

HMA Mix Design Software package (SHADES). The SHADES software includes a "virtual" design 

feature to estimate the mixture's volumetric properties based on the aggregate gradation/specific 

gravity and asphalt binder specific gravity. For each of the 16 specific gravity combinations for each 

gradation, SHADES provided an estimate for asphalt binder content and VMA based on a 3M ESAL 

(N-design = 86 design gyrations) mixture at 4 percent design air voids. A complete set of the 

volumetric properties used for the analysis are included in Table 4a & 4b. 

The 32 test mixtures were run through the Standard Model, INDEX Model, and VIRTUAL 

Model to examine the response of computed film thickness values for the various combinations. 

Figures 13, 14,15, and 16 summarize the results of the three film thickness models. As expected, 
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Table 4a - Test Mixture Parameters - Fine Gradation Blend 

Aggregate Specific Gravity (Gsb) Mixture Volumetrics 
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1 2.550 2.550 2.550 2.550 2.550 15.2 4 5 5 0 1.02 

2 2.550 2.550 2.55Ô 2.750 2.619 15.4 4 5 5 0 1.02 

3 2.550 2.550 2.750 2.550 2.569 15.2 4 5 5 0 1.02 

4 2.550 2.550 2.750 2.750 2.638 15.5 4 5 5 0 1.02 

5 2.550 2.750 2.550 2.550 2.590 15.3 4 5 5 0 1.02 

6 2.550 2.750 2.550 2.750 2.660 15.6 4 5 5 0 1.02 

7 2.550 2.750 2.750 2.550 2.609 15.4 4 5 5 0 1.02 

8 2.550 2.750 2.750 2.750 2.681 15.7 4 5 5 0 1.02 

9 2.750 2550 2.550 2.550 2.613 15.4 4 5 5 0 1.02 

10 2.750 2.550 2550 2.750 2.685 15.7 4 5 5 0 1.02 

11 2.750 2.550 2.750 2.550 2.632 15.5 4 5 5 0 1.02 

12 2.750 2.550 2.750 2.750 2.705 15.8 4 5 5 0 1.02 

13 2.750 2.750 2.550 2 550 2.654 15.6 4 5 5 0 1.02 

14 2.750 2.750 2.550 2.750 2.729 15.8 4 5 5 0 1.02 

15 2.750 2.750 2.750 2.550 2.674 15.6 4 5 5 0 1.02 

16 2.750 2.750 2.750 2.750 2.750 15.9 4 5 5 0 1.02 

Table 4b - Test Mixture Parameters - Coarse Gradation Blend 

Aggregate Specific Gravity (Gsb) Mixture Volumetrics 
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1 2.550 2.550 2.550 2.550 2.553 15 4 4.9 4.9 0 1.02 

2 2.550 2.550 2.550 2.750 2.560 15 4 4.9 4.9 0 1.02 

3 2.550 2.550 2.750 2.550 2.562 15 4 4.9 4.9 0 1.02 

4 2.550 &550 2.750 2.750 2.570 15 4 4.9 4.9 0 1.02 

5 2.550 2.750 2.550 2.550 2.639 15.3 4 4.9 4.9 0 1.02 

6 2.550 2.750 2.550 2.750 2.647 15.3 4 4.9 4.9 0 1.02 

7 2.550 2.750 2.750 2.550 2.649 15.3 4 4.9 4.9 0 1.02 

8 2.550 2.750 2.750 2.750 2.657 15.4 4 4.9 4.9 0 1.02 

9 2.750 2.550 2.550 2.550 2.635 15.3 4 4.9 4.9 0 1.02 

10 2.750 2.550 2.550 2.750 2.643 15.3 4 4.9 4.9 0 1.02 

11 2.750 2.550 2.750 2.550 2.645 15.3 4 4.9 4.9 0 1.02 

12 2.750 2.550 2.750 2.750 2.653 15.3 4 4.9 4.9 0 1.02 

13 2.750 2.750 2.550 2.550 2.728 15.6 4 4.9 4.9 0 1.02 

14 2.750 2.750 2.550 2.750 2.736 15.7 4 4.9 4.9 0 1.02 

15 2.750 2.750 2.750 2.550 2.738 15.7 4 4.9 4.9 0 1.02 

16 2.750 2.750 2.750 2.750 2.747 15.7 4 4.9 4.9 0 1.02 
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the Standard Model film thickness does not change over the series of 16 test mixtures. Looking at 

Figures 13 and 14, there are visually apparent differences between the INDEX Model and VIRTUAL 

Model film thickness response to the fine gradation model and response to the coarse gradation 

model. From the fine gradation tests, the INDEX Model and VIRTUAL Model film thickness values 

parallel the changes to the combined aggregate specific gravity. These values are higher than the 

Standard Model film thickness values similar to the analysis that isolated gradation (Figure 4). Also, 

the film thickness values trend higher as the aggregate specific gravity transitions from 2.55 to 2.75. 

Overall, the changes in the fine gradation tests reflect similar observations to the individual 

parameters of gradation and specific gravity. 

The coarse gradation test sequence generated different results. The coarse gradation 

specific gravity sequence shows four distinct primary changes, unlike the zigzag pattern of the fine 

gradation. This difference reflects the fact that the coarse gradation is dominated by only two of the 

four aggregate sources. The crushed limestone and limestone chip sources account for 88 percent of 

the aggregate. The manufactured sand and natural sand only contribute 5 and 4 percent, 

respectively. In addition, the coarse aggregate gradation includes 3 percent mineral filler which 

makes up about 50 percent of the total mineral filler and does not change specific gravity in this 

analysis. Each of the four combined aggregate specific gravity sequences represents a change of 

one of the primary aggregate sources. The minor changes in each set of four tests reflect the 

changes of the secondary aggregates. 

With this explanation of the coarse gradation specific gravity results, Figure 14 shows that the 

INDEX Model and VIRTUAL Model film thickness values do not mirror the same changes as the 

combined specific gravity. In fact, the film thickness values primarily reflect the change in the crushed 

limestone specific gravity. All other specific gravity changes had little impact on the film thickness. 

The other factor that relates the crushed limestone source to the change in the INDEX Model and 

VIRTUAL Model film thickness vales is the amount of mineral filler. The impact of the specific gravity 

change on approximately 50 percent of the mineral filler is the predominant reason for the film 

thickness difference. None of the changes to the other sources had a significant impact on the 

calculated film thickness. 

The other difference between the fine and coarse gradation test results is the relationship of 

the INDEX Model and VIRTUAL Model film thickness values to the Standard Model value. The 

sensitivity study of the gradation (Figure 4) showed that the INDEX Model film thickness values 

continued to increase as the gradation became coarser, but the VIRTUAL Model film thickness values 

trended towards a constant value for coarse gradations. The multi-source analysis shows that the 

VIRTUAL Model film thickness values are similar to the Standard Model values and the INDEX Model 

film thickness values are higher for the coarse gradation. 
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In Figures 15 and 16 we resorted the results and graphed the computed film thickness values 

against the combined aggregate bulk specific gravities. For the fine aggregate gradation tests, the 

film thickness results tend to divide into three distinct groups. For the coarse gradation tests, the film 

thickness results divided into four groups. The explanations discussed above could be used again to 

distinguish between groups. For simplicity, this analysis clearly concludes that computing the film 

thickness without the input of the source specific gravities will lead to incorrect film thickness values. 

2-D Versus 3-D Particle Surface Area 

Both the Standard Model and INDEX Model compute film thickness as the depth of asphalt 

binder over a two-dimensional (2-D) sheet representing the surface area of the particles. Converting 

the three-dimensional (3-D) particle surface area to a 2-D surface generates errors in the actual film 

thickness of the asphalt binder shell over each particle. This error increases as the particles get 

smaller. The 2-D approximation is reasonably accurate for most particles down to the 1.18-mm sieve. 

Below the 1.18-mm sieve, the difference between the 2-D film thickness and 3-D shell thickness 

increase dramatically. Figure 17 gives the reduction factors to convert a 2-D film thickness to a 3-D 

shell thickness. From the figure, if the 2-D film thickness is 10 microns, then the 3-D shell thickness 

is less than 9.5 microns for particles retained on the 0.150-mm sieve, slightly more than 7.5 microns 

for 0.038-mm particles, and less than 5.5 microns for 0.010-mm particles. 

This study did not perform a detailed examination of the difference between 2-D and 3-D film 

thickness. In general, if a film thickness model bases the film thickness on uniform 3-D shell 

thickness, the film thickness values would be lower than the current 2-D model. For a film thickness 

model that determines an equal film thickness on all particles, a 3-D analysis would require an 

iterative process to match asphalt binder volume to accumulated film thickness shell volume. If a film 

thickness model used the 3-D shell volumes to compute a uniform shell film thickness, the impact of 

the mineral filler particles would be even greater. 
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Phase / Summary 

At best, the current Standard Model for calculating film thickness is a poor approximation of 

the concept of an asphalt binder film. The Standard Model only uses the combined gradation and 

asphalt binder content on a weight basis. It cannot account for specific gravity and shape differences 

in multiple aggregate sources combined to develop the HMA mixture. Both the INDEX Model and 

VIRTUAL Model account for multiple aggregate sources with different specific gravities. The INDEX 

Model includes shape factors for each aggregate source. The VIRTUAL Model accounts for the 

spatial relationship between particles. But how do these new variables impact the film thickness 

when they are all combined into the INDEX Model or VIRTUAL Model? Is the minimum film thickness 

criteria of 8.0 microns still valid for assuring the durability of a HMA mixture? The Phase II effort of 

this study is intended to examine these questions. 
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Chapter 4. Film Thickness Related to Hot Mix Asphalt Research 

The INDEX Model and VIRTUAL Model bring new variables into determining film thickness. 

Both the models are improvements over the existing film thickness equation, but do they improve our 

ability to rate the durability of the HMA mixture? Is the minimum film thickness criteria of 8.0 microns 

still valid for assuring the durability of a HMA mixture? The Phase II effort of this study is intended to 

examine this question. 

The study looks at previous HMA durability studies and places the new models along side the 

existing film thickness equation. Simply generating a new film thickness value is not sufficient. If the 

new models better represent the aggregate/binder relationship of the HMA, then we should see 

improvements in the correlation of film thickness to test results measuring the durability of mixtures. 

This phase of the study will first examine previous studies that specifically looked at HMA 

durability and film thickness. Only studies that measured the impact of aging on the HMA are used. 

These studies subjected the HMA to both short-term aging and long-term aging. Further, these 

studies measured both the properties of the aged mixes and aged binders. Two studies were 

selected. Kandahl and Chakraborty's 1996 report (noted as the Auburn Study in this section) 

highlights the study of a single aggregate gradation with multiple binder contents. Nukunya and 

Roque's (et al.) 2001 report (noted as the Florida Study in this section) looked at six different 

aggregate gradations from a single limestone aggregate source with a unique optimum binder content 

for each gradation. 

Comparison with Durability Studies 

Auburn 1996 

Auburn's 1996 study (12) is limited to one dependent variable, binder content. The research 

involved six mixtures using a single gradation and six binder contents. Five replicates of each mix 

were prepared, measured and tested. The gradation was a fine-graded 12.5-mm NMAS limestone 

with relatively low absorption (0.3 percent binder). The gradation is shown in Figure 18. The AC-20 

binder contents ranged from 2.2 percent to 7.1 percent. The loose mixtures were short-term oven 

aged at 135°C for 4 hours, then compacted to 8 percent air voids. The compacted mixtures were 

measured for density and tested for resilient modulus at 25°C. Following the testing, the compacted 

specimens were long-term oven aged at 85°C for 120 hours and then tested again at 25°C for 

resilient modulus. The specimens were finally subjected to standard IDT loading to failure. Some 

mixture was set-aside after short-term aging for recovery of the asphalt binder. Additional mixture 

was taken after the completed IDT test for recovery of the long-term aged binder. All of the binder 

testing for penetration was done at 25°C and the viscosity testing was done at 60°C. Complex 
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modulus testing was not done at the same temperature. The recovered short-term aged binder was 

tested at 64°C and the long-term aged binder was tested at 19°C. The report justifies the use of 

19°C, but makes the comparison of short-term and long-term aging difficult. 

12.5 19 
100 

9.5 
90 

4.75 

U) 
2.36 

1.18 

0.6 

0.3 
20 0.075 

3.5 1.5 2 2.5 3 4 0 0.5 1 
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Figure 18 - Gradation for Auburn Study 

The first step in examining this data was a review of the computed mixture parameters used 

in the original study. Sufficient detail was not provided in the TRB report, so the detailed 1994 

NCAT/Auburn study (18) was obtained to get the mixture details. From the measured mixture 

volumetric properties, an adjustment of the percent asphalt absorbed was required. The Auburn 

study used a 0.2% asphalt absorption for the aggregate based on a previous report, but measured 

mixture densities in the Auburn research showed that the asphalt absorption was between 0.29 and 

0.3 percent. This correction reduced the standard film thickness value by 0.2 microns. 

The study is easy to analyze because there is only one dependent variable, binder content. 

Most of the correlations of film thickness to mixture properties (like resilient modulus) and film 

thickness to recovered binder properties (like penetration) are very sound and agree with general 

engineering expectation. The report notes two deviations in the analysis. The data for film thickness 

versus long-term aged asphalt binder viscosity did not lend itself to a "best fit" curve and the 

measured long-term aged asphalt binder complex modulus for the 13.0 micron film thickness appears 

to be an outlier. 

Injecting the new film thickness values into the study's data created similar well correlated 

parameters. The film thickness values are given in Table 5 and displayed in Figure 19. Similar to the 
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results of the generic gradations used to demonstrate the equations, the INDEX Model film thickness 

tends be provide higher values than the standard equation. The value is approximately 0.5 micron 

greater at the lowest binder content and almost 2.0 microns greater at the highest binder content. 

Accounting for aggregate specific gravity is probably the largest contributing factor. Because the 

VIRTUAL Model requires knowledge of the mixture volumetrics, the film thickness values from the 

VIRTUAL Model are based on the average of the computed values for each of the five replicates. 

The VIRTUAL Model cuts across the other two film thickness values. It shows the highest film 

thickness value at the lowest asphalt binder content (lowest reported film thickness) and is 

approximately 1.5 microns lower than the standard value at the highest binder content (highest 

reported film thickness). The reduction in film thickness at high binder contents reflects the ability of 

the VIRTUAL Model to account for three-dimensional distribution of the binder and aggregate. In 

three dimensions, it takes more binder to get an incremental change in film thickness and, at equal 

mixture air voids, the aggregate particles are further apart as the binder content increases. 

To measure the impact of the new film thickness values, a correlation table was built using 

the correlation data analysis feature in Microsoft Excel. The correlation function displays the result of 

the covariance of the X,Y pairs divided by the product of the standard deviation of the values in each 

set. The correlation values do not distinguish between types of regression curves that best fit the 

data. They merely provide a first-step examination of the differences (or lack of differences) between 

each pair. Values approaching 1.00 or -1.00 are considered strongly correlated and values closer to 

0.00 show little or no correlation. 

A more detailed look at specific pairs of data followed the correlation analysis. Most of the 

regression curves are third order polynomials. These regressions express the expected trend in the 

data. The trend includes a probable plateau at either or both ends of the data. Mixtures with low film 

thickness would be expected to behave similarly and mixtures with high film thickness would be 

expected to behave similarly. 

Table 5 - Film Thickness Values for Auburn Study 

Computed Film Thickness Values (microns) 
Reported Standard INDEX Model VIRTUAL Model 

3.71 3.52 3.98 4.26 
5.57 5.38 6.08 5.90 
7.42 7.24 8.18 7.43 
9.28 9.08 10.25 8.78 

11.15 10.95 12.36 10.13 
13.01 12.80 14.46 11.44 
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Figure 19 - Film Thickness Comparison for Auburn Study 

The correlation summary for comparing the film thickness values to the measured material 

properties in the Auburn study is given in Table 6. Changes in the penetration and viscosity 

measurements of the recovered binder for both short-term and long-term aging trended as expected 

and have very high correlations. Although there is no change in the level of correlation, the 

regression curves given in Appendix B show the impact of the film thickness values from the 

VIRTUAL Model. All of the penetration curves in Figure B1 flatten at very low film thickness values, 

then begin to improve as the value reaches 8 microns. Under both aging conditions, the curve for the 

VIRTUAL Model increases steeper. 
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Table 6 - Correlation Summary for Auburn Study 

Binder / Mixture Property FT(std) FT(index) FT(virtual) 
Penetration STOA 0.98 0.98 0.98 
Viscosity STOA -0.94 -0.94 -0.95 
Complex Modulus, G* STOA -0.68 -0.68 -0.66 
Phase Angle STOA 0.70 0.70 0.67 
Penetration LTOA 0.97 0.97 0.97 
Viscosity LTOA -0.97 -0.97 -0.96 
Complex Modulus, G* LTOA -0.82 -0.82 -0.84 
Phase Angle LTOA 0.85 0.85 0.85 
Tensile Strength LTOA -0.99 -0.99 -0.99 
Tensile Strain LTOA 0.97 0.97 0.96 
Tensile Modulus LTOA -0.98 -0.98 -0.98 
Resilient Modulus STOA -0.95 -0.95 -0.97 
Resilient Modulus LTOA -0.95 -0.95 -0.97 
Resilient Modulus Index -0.97 -0.97 -0.97 
STOA - Short Term Oven Aging (4 hours at 135°C) 
LTOA - Long Term Oven Aging (120 hours at 85°C) 

In Figure B2, the viscosity curves for short-term aging increase dramatically as the film 

thickness falls below 8 microns. This trend shows the increased aging of the binder during the 

production of the mixture. The viscosity curves for the recovered binder after long-term aging 

reinforce the observation that low film thickness values can be associated with severe aging of the 

binder. Again, the viscosity measurements for film thickness values below 8 microns become flat. An 

indication that the binder has lost most of its lighter fractions. Similar to the penetration curves, the 

long-term aged viscosity curve for the VIRTUAL Model improves quicker as the film thickness 

increases. 

The correlation values for the Complex Modulus measurements and phase angle 

measurements are low due to a probable outlier value in each dataset. The measured complex 

modulus for the lowest film thickness in the short-term aged dataset and the measured value for the 

highest film thickness in the long-term aged dataset do not follow the expected trend, as shown in 

Figure B3, and could be removed as outliers. The Auburn research report also noted these outliers. 

With the outliers omitted, the R2 values for the regression curves improve to 0.90 and 0.99 

respectively for the Complex Modulus. The regression curves for the Complex Modulus also show 

that the trend of the film thickness values from the VIRTUAL Model change at a steeper rate than the 

standard and INDEX Model values. 

The regression curves in Figure B4 for the phase angle of the short-term aged binder 

exaggerate the influence of the third-order polynomial equation. The low film thickness phase angle 

does not follow the expected trend and was removed from the regression curve. The remaining data 

points show a clear plateau at both ends of the film thickness range. All six data points of the long-

term aged binder phase angle measurements are included in the regression curve. Unlike the 
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Complex Modulus value, the phase angle at the highest film thickness does not appear to deviate 

from the expected trend. 

Collectively, the measured response of the recovered binder follows the expected trend. 

The penetration and viscosity measurements appear to be more uniform than the Complex Modulus 

and phase angle. In most cases, the trends for the VIRTUAL Model film thickness curves show an 

increased rate of binder change over the standard and INDEX Model curves. The comparison of the 

correlation and regression values for the three film thickness datasets showed no practical change or 

improvement. 

The examination of the changes in binder properties are a direct measure of the rate of aging 

(or durability). However, the process for acquiring binder samples to test requires extraction and 

recovery of the binder from the mixture. In addition to testing error, the extraction/recovery process 

introduces another level of variability in the measured data. The other approach to identify changes 

in durability is to measure the change in the mixture response to physical testing. In the Auburn 

study, Resilient Modulus was used as a non-destructive test to measure the response of the same set 

of mixture specimens after both short-term aging and long-term aging. This physical testing was 

followed by IDT loading to failure (destructive testing) of the long-term aged specimens. The intent of 

this testing is not to define the acceptable level of mixture stiffness or tensile strength. Rather, the 

results can be used to see how trends in the mixture response changed as the film thickness 

changed. 

In general, Resilient Modulus testing is inherently more variable than other methods of testing 

due to the added components of aggregate, mixture interaction, and the very small (non-destructive) 

levels of strain applied. However, with attention to testing protocol and a greater number of 

repetitions, consistent modulus values can be achieved. The trend of the Resilient Modulus values in 

the Auburn study is very good and the variation is relatively small. The initial correlation analysis 

showed film thickness to Resilient Modulus data set pairs at 0.95 values. Applying the third-order 

polynomial best fit, the R2 values are 0.99 for all regression curves. Both the short-term aged and 

long-term aged regression curves in Figure B5 agreed with the expected trend. As film thickness 

(binder content) decreased, the mixture stiffness increased, so the modulus values increased. This 

trend would occur without regard to the amount of aging. But with closer examination, the Resilient 

Modulus values at the higher film thickness values for both short-term and long-term aged conditions 

tend to flatten off at 2000 MPa. We can conclude from this observation that the mixture experienced 

very little additional aging during the long-term aging process at higher levels of film thickness. The 

affect of film thickness on mixture aging is easier to see through the use of a modulus ratio graph. 

Using the ratio of long-term aged mixture modulus divided by short-term aged mixture modulus, we 

create a value that expresses the increased rate of mixture stiffness and neutralize the general affect 

of variation in binder content. The regression curves generated on this graph in Figure B5 clearly 
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show how the difference in film thickness impacts the change in mixture stiffness. At very low film 

thickness levels, the stiffness of the mixture increases by 50 percent (MR ratio ~ 1.5). At very high 

film thickness values, the mixture stiffness only changes slightly (MR ratio ~ 1.05). The curves for the 

mixture Resilient Modulus agree with the curves for the recovered asphalt binder. Like the trends in 

the binder tests, the curves for VIRTUAL Model film thickness are steeper. 

The last measured property of each mixture was the IDT loading at constant deformation rate 

to failure. The results are expressed as strength (stress), strain, and modulus (stress/strain). All the 

correlation values are 0.96 and above. The third-order polynomial regression curves shown in Figure 

B6 have R2 values of 0.99 or 1.00. The results of the IDT testing are only provided for the long-term 

aged condition. The results are very similar to the Resilient Modulus testing, but we cannot examine 

the rate of IDT change since there are no short-term test results to compare to. As shown in the 

other tests, the curves for the VIRTUAL Model film thickness change quicker than the standard and 

INDEX Model curves. 

Overall, the Auburn study was well thought out and accurately executed. There are very few 

questions about errant data and the only measured properties that exhibited significant variation were 

the recovered asphalt binder Complex Modulus from both the short-term aged loose mixture and the 

long-term aged compacted specimens. With relatively high correlation values and strong regression 

curve R2 values, there is no improvement in the film thickness relationships from using the INDEX 

Model or VIRTUAL Model. The only consistent observation was the increased rate of aging change 

when applying the VIRTUAL Model. 

Florida 2001 
The second durability study selected for the film thickness comparison was performed by 

Nukunya, Roque, et al. (13) at the University of Florida and reported at AAPT in 2001. Florida's 

research examined the affect of gradation on mixture durability. Six 12.5 NMAS gradations were 

developed using a single limestone aggregate source with a nominal 1-percent asphalt absorption. 

The gradations ranged from fine to coarse with approximately 30 to 50 percent passing the 2.36-mm 

sieve. The gradations are shown in Figure 20. The binder content varied by mix from 5.3 to 6.5 

percent to achieve 4 percent air voids at N=109 using a gyratory compactor. By fixing the air voids at 

4 percent, the film thickness for each mix reflected the differences in the gradation and binder 

content. The loose mixture was short-term oven aged at 135°C for two hours, compacted to 7 

percent air voids, and measured for volumetric properties. Half of the compacted specimens were 

then long-term oven aged at 85°C for 120 hours. All specimens were prepared for IDT testing to 

measure Resilient Modulus, Creep Compliance, and strength at 10°C. Following the mixture testing, 

the asphalt binder from each combination of gradation and aging condition was extracted and 

recovered for binder testing. Details of the mixture tests are referenced in the AAPT report. 
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Figure 20 - Gradations for Florida Study 

The initial review of the Florida study identified several computed volumetric values that were 

slightly different and probably associated with rounding answers during the intermediate steps of 

calculations. These rounding differences were also found in the aggregate surface area and film 

thickness calculated values. The new values are used in this film thickness study. The only 

significant difference is in the values related to the computed filler:bitumen ratio. The study applies 

the total binder weight, but should apply the effective binder weight. 

This study was selected for application of the new film thickness values because it shows a 

high amount of variation in the test results. The use of gradation and constant air voids as the control 

variables do not establish any relationship between the six sets of data. There is no evidence that the 

mixtures represent optimal properties and some mixture volumetric values do not satisfy standard 

mixture criteria. The key to examining this data is to make comparisons to the rate of mixture 

property change from short-term aging to long-term aging. We can also examine the recovered 

binder properties because they are isolated from the influence of the aggregate in binder testing. 

The primary approach to examining data from multiple mixtures is to compare the relative 

change in properties, not the actual measured properties. Since each mixture (gradation, binder, and 

air voids) responds differently to the tests, the relationship between the mixtures at any given point 

during the aging process has no meaning when we are trying to examine durability. The correct 
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analysis looks at the relative change in a mixture's measured response from one level of age 

conditioning to another. By computing the relative change, the analysis brings all the mixtures to an 

equal basis for further study. As an example, if two mixtures have different Resilient Modulus values 

after short-term aging, we cannot conclude that the difference in values is related to the age 

conditioning. The mixture could simply represent two uniquely different mixture compositions. 

However, if one mixture becomes dramatically stiffer than the other after long-term aging, then we 

can confidently conclude that the greater change in mixture stiffness was likely a result of increased 

aging. 

A comparison of INDEX Model and VIRTUAL Model film thickness values to the Florida's 

report film thickness values is displayed in Table 7 and Figure 21. The graph also marks which film 

thickness value is associated with which gradation. As expected, the film thickness values computed 

by the INDEX Model are 0.3 to 0.4 microns higher than the standard values. The values computed 

by the VIRTUAL Model create the same deviation from the trend for the mixtures with coarse 

gradations (C1 and C2). The VIRTUAL Model is 0.5 microns higher for the smallest film thickness 

(fine mix, F2) and 0.9 microns lower for the highest film thickness (coarse mix, C1). The spread in 

mixture characteristics can be seen in Figure 21 by looking at the association of surface area to film 

thickness for the six gradations. The data points correctly trend from high surface/low film thickness 

to low surface area/high film thickness, but the individual mixtures with comparable surface area have 

more than a 1.0 micron difference range. Figure 21 compares the film thickness values to effective 

binder content (the other primary input into film thickness), the trend is reasonable, but mixtures F1 

and C2 invert their relationship to the group. 

Table 7 - Film Thickness Values for Florida Study 

Computed Film Thickness Values (microns) 
Mix No. Reported Standard INDEX Model VIRTUAL Model 

C1 11.2 11.2 11.6 10.3 
C2 10.1 10.1 10.5 9.5 
C3 8.0 7.8 8.1 7.9 
F1 9.0 9.0 9.3 9.4 
F2 6.9 6.7 7.0 7.3 

F3C4 8.1 8.0 8.3 8.2 
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Figure 21 - Film Thickness Comparisons for Florida Study 
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The correlation analysis for the recovered asphalt binder properties is provided in Table 8. In 

every analysis group, the standard and INDEX Model correlation values are better than the VIRTUAL 

Model correlation values. It identified a moderately strong relationship (0.82-0.85) for penetration in 

both short-term aged and long-term aged conditions. The correlation values for the phase angle are 

a degree lower (0.77-0.72) and the viscosity and Complex Modulus relationships are only fair. 

Table 8 - Correlation Summary of Binder Properties for Florida Study 

Binder / Mixture Property FT(std) FT(index) FT(virtual) 
Penetration STOA 0.83 0.84 0.70 
Viscosity STOA -0.55 -0.55 -0.48 
Complex Modulus, G* STOA -0.53 -0.54 -0.38 
Phase Angle STOA 0.73 0.74 0.64 
Penetration LTOA 0.84 0.85 0.73 
Viscosity LTOA -0.54 -0.55 -0.40 
Complex Modulus, G* LTOA -0.66 -0.68 -0.51 
Phase Angle LTOA 0.76 0.78 0.67 
STOA - Short Term Oven Aging (2 hours at 135°C) 
LTOA - Long Term Oven Aging (120 hours at 85°C) 

Film thickness versus penetration graphs for short-term aged and long-term aged are given in 

Appendix C, Figure C1. The data sets were fitted with third-order polynomial regression curves. Both 

the short-term and long-term aged regressions show a similar trend. The penetration of the binder 

drops at low film thickness and increases at high film thickness. This trend follows the general 

expectation, but the spread of the data can generate other interpretations. The relative order of the 

results for each mixture indicate that the binder recovery process was successful and there appears 

to be little or no influence from the extraction solvents. The standard and INDEX Model curves are 

very similar, as expected. The VIRTUAL Model curve has a lower R2 value and displays are more 

aggressive change in penetration as it relates to film thickness. 

The data from the viscosity testing shown in Figure C2 displays the comparable trend to the 

penetration data. Higher viscosity (stiffer binder) at low film thickness and lower viscosity at high film 

thickness. The R2 values are misleading, because the regression function attempts to fit all the data. 

The normal expectation for the viscosity values would not find a decreasing-increasing-decreasing 

pattern. A manually fitted curve would likely display a flat transition between the low and high ends. 

Contrary to the penetration results, the relative change in the viscosity measurements for mixture C2 

between the short-term aged and long-term aged binder does not fit the balance of the binder tests. 

Again, the standard and INDEX Model results are similar and the VIRTUAL Model creates a tighter 

curve. 
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The results of the Complex Modulus testing in Figure C3 reflect the same pattern as the 

penetration and viscosity results. The diversity of the data is displayed in the R2 values, 0.52 and 

lower. 

In Figure C4, the phase angle measurements for the coarse mixtures (C1 and C2) change 

the best fit third-order polynomial curves. It is difficult to conclude which set of test results are more 

likely to mis-represented the binder. The overall trend is reasonable, but the regression on the high 

film thickness end should not peak and drop. Manual curve fitting would improve the expected trend. 

The consistency of the penetration, viscosity, and Complex Modulus data trends, even at 

relatively nominal levels of correlation, could conclude that film thickness is a factor in determining the 

durability of different mixtures. This is a weak conclusion in light of the very small database in this 

study. 

The analysis of the impact of the INDEX Model and VIRTUAL Model using the Florida study 

uses the relative change in material properties as the primary method of comparisons. The relative 

change value represents a percent increase (or decrease) in a measured response computed as the 

difference between the short-term aged value and long-term aged value divided by the short-term 

aged value, expressed as (LTOA-STOA)/STOA. The results of the initial correlation analysis are 

summarized in Table 9. Three groups of the four recovered binder correlation groups show good 

correlation. Only one of the six mixture property groups have relatively good correlation. The other 

five mixture groups have no correlation with values less than 0.23 and most are below 0.10. 

Table 9 - Correlation Summary of Relative Change for the Florida Study 

Binder / Mixture Property FT (std) FT(index) FT(virtual) 
Penetration -0.82 -0.83 -0.72 
Viscosity 0.23 0.26 0.0lJ 
Complex Modulus (G*) 0.85 
Phase Angle -0.82 -0.84 
Resilient Modulus (MR) -0.11 -0.08 -0.23 
Creep Compliance -0.05 -0.08 0.14 
M-value -0 74 
Fracture Energy -0 02 -0.02 -0.01 
Failure Strain 0.002 -0.01 0.06 
Tensile Strength 0.05 0.07 -0.07 

Figure C5 summarizes the percent change in asphalt binder properties. The graph relating 

film thickness to the percent change in penetration shows a good level of R2 using the third-order 

polynomial regression curve. The change in penetration increases at low film thickness values and 

decreases at high film thickness values. This trend agrees with the expectation that higher values of 

film thickness will slow the rate of binder aging. The standard and INDEX Model regression curves 

are very similar. The VIRTUAL Model regression curve tightens the range of film thickness, but tends 
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to initiate the high and low curves at approximately the same points (8 and 10 microns) as the other 

to groups. 

There is no correlation of film thickness to percent change in viscosity using the data 

generated in the Florida study. 

Very good regression curves were formed with the data comparing film thickness and percent 

change in Complex Modulus. However, the shape of the curve suggests that the binder change is 

constant at the lower and higher levels of film thickness and transitions through the intermediate film 

thickness values. The breaks in the curves generally occur at 8 and 10 microns, similar to the 

change in penetration. The R2 for the VIRTUAL Model regression curve (0.70) is well below the R2 

for the other two curves (0.90 and 0.92) and, unlike most of the other graphs, is similar in shape. 

Even though the correlation value for the phase angle was above 0.80, the R2 values for the 

regression curves are not as good. The trend in the percent change in phase angle meets general 

expectation, but the third-order polynomial curves for the standard and INDEX Model are relatively 

smooth. The regression curve for the VIRTUAL Model film thickness values compares well with the 

penetration data regression curves. 

As noted, only one of the six data sets for percent change in mixture properties generated a 

good correlation value in the initial assessment. Figure C6a and C6b exam the individual pairs of film 

thickness and mixture response and found a similar lack of identifiable trends in the graphs. The plot 

of change in M-value created a reasonable regression curve, but the spread of the percent change in 

M-value is wide. 

Conclusions of the Durability Analysis 

The Auburn and Florida reports were selected for the durability analysis because both studies 

measured the short-term aged properties and long-term aged properties of the mixture and recovered 

binder. Each report contained sufficient data on the materials in the mixtures to calculate alternative 

film thickness values based on the INDEX Model and VIRTUAL Model. The following conclusions are 

drawn. 

• The Auburn study used a single gradation and varied the binder content. The correlation of film 

thickness to mixture and binder properties was very good. The Florida study examined multiple 

gradations and set the binder content to obtain 4 percent voids. The correlation of film thickness 

to asphalt binder properties was good, but there was no correlation with most of the mixture 

properties. Film thickness can be used to measure the durability of HMA mixture, but differences 

in mixture composition and structure make it difficult to use mixture tests for measuring durability 

with multiple mixtures. 

• Testing of extracted and recovered binders gave consistent results. This conclusion may not be 

valid for modified binders. 
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• Third-order polynomial regression curves properly expressed the expected trend in durability. 

They identified rapid aging at low film thickness and slow aging at high film thickness. Some 

curves expressed change at both ends with little change in the middle. Other curves expressed 

constant values at both ends with a transition in the middle. The shape of each curve may be 

relative to the type of test performed and the test temperature used. 

• The INDEX Model did not substantially change the durability regression curves. Both studies 

used single aggregate source mixtures, so the differences in film thickness associated with 

varying aggregate specific gravity were not present. The VIRTUAL Model tended to compress 

the film thickness values and tighten the durability regression curves. 

• For both studies, film thickness values above 10 microns provided the best durability. Film 

thickness values below 8 microns showed poor durability. 

Comparison with Rutting and Fatigue Studies 

Durability studies provide a target minimum film thickness value to achieve a desirable level 

of durability. Rutting and fatigue studies provide maximum (rutting) and minimum (fatigue) 

relationships to achieve proper HMA mixture performance under traffic. Can these studies further 

bracket the film thickness range to satisfy mixture stiffness and flexibility requirements? Using the 

Auburn and Florida studies, can we define these film thickness limits? 

The Auburn study measured the Resilient Modulus and Tensile strength of one mixture at 

multiple binder contents. The regression curves comparing film thickness to these mixtures 

properties were very uniform. As the film thickness increased, these mixture properties decreased. 

The desirable level of Resilient Modulus and Tensile strength will be dependent on the intended 

mixture's use (for example, base or surface). We could not arbitrarily require 6000 Kpa and 10 

microns of film thickness for this mixture. Mixture characteristics, in addition to binder content, would 

have to change to meet 6000 Kpa and 10 microns. 

The Florida study better demonstrates the complexity of achieving durability and the ability to 

carry traffic load. Figure 22 shows graphs comparing film thickness to measured mixture properties 

of the six different gradations from a single aggregate source. Two mixtures can have equal load 

carrying values and different film thickness values or different load carrying values and equal film 

thickness. Resilient Modulus values for mixes C1, C2, and F2 are about the same after short-term 

aging, but the film thickness values range from 7 to 11 microns. At the same time, mixes F2, F3/C4, 

and C3 have about the same film thickness, but the Resilient Modulus ranges from 8.5 to 12 MPa. 

Similar trends can be seen in the Tensile Strength and Failure Strain graphs. 
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Figure 22 - STOA Mixture Properties from Florida Study 

Pellinen (19) examined the behavior of a wide variety of mixtures. The study compared the 

volumetric mix design criteria to mechanical performance test results. While the study did not focus 

on mixture durability, it did compare the mixture requirements to satisfy stiffness and strength. The 

report concludes... "A key to the successful mix design is the balance between the volumetric 

composition and the used raw materials at the specific climatic and traffic conditions." Figure 

5(a) in Pellinen's report, provided here as Figure 23, displays the competing mixture performance 

criteria. 

Can we further bracket the film thickness range to satisfy mixture stiffness and flexibility 

requirements? No. Film thickness alone cannot bracket the intended level of rutting or fatigue 

characteristics for a HMA mixture. In concert with other mixture characteristics (like gradation, CAA, 

FAA, and density), film thickness may be one of a group of input parameters for other mixture 

performance criteria. It is easy to demonstrate that mixtures with lower binder contents (low film 

thickness) generally have relatively high rutting resistance. And mixtures with higher binder contents 
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(high film thickness) have better fatigue resistance. But as the Florida study showed, two different 

mixtures with reasonably equivalent binder contents do not have the same rutting and fatigue 

properties. 
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Figure 23 - Conceptual Stiffness/Strength Criteria for Asphalt Mixtures (19) 

Phase II Summary 

If the new models better represent the aggregate/binder relationship of the HMA, then we 

should see improvements in the correlation of film thickness to test results measuring the durability of 

mixtures. The studies selected for this phase measured the properties of HMA mixes and the 

extracted asphalt binders after both short-term aging and long-term aging. The Auburn study isolated 

binder content was the primary variable. The INDEX Model computed higher film thickness values 

and the VIRTUAL Model flattened the film thickness range. The new film thickness values did not 

improve the correlation with measured durability related tests, but the VIRTAUL Model did change the 

shape of the trend as binder content increased. The Florida study isolated the aggregate gradation 

as the primary variable. The INDEX Model computed higher film thickness values and the VIRTUAL 

Model flattened the film thickness range for the change in gradation similar to the change in Auburn's 

study of binder content. With only one binder content for each mixture in the Florida study, The 

correlation between film thickness and durability was limited, particularly with mixture tests. The new 

film thickness values did not improve the correlations. 

The multiple gradations in the Florida study demonstrate the complexity of balancing HMA 

durability and HMA strength. Two mixtures can have equal measured strength and different film 

thickness values or different strength and equal film thickness. A matrix of gradation and binder 

combinations should be studied to see if there is a relationship between film thickness and HMA 

mixture properties. 
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CHAPTER 5. Film Thickness Related to Iowa Mix Designs 

Phase I developed the INDEX Model and VIRTUAL Model to replace the standard film 

thickness equation. Phase I further demonstrated how the new equations responded to changes in 

mixture characteristics. Phase II applied the new equations to two HMA durability studies. The first 

durability study used one mixture and the second used six mixtures. The results of Phase II showed 

that the multiple variable studies (the second study) have difficulty clearly identifying mix durability. 

Durability is not a single parameter performance characteristic and the common compacted mixture 

test methods give different responses for different mixtures. If we examine a large population of 

mixtures for durability, we would expect to have the same difficulty distinguishing durability from other 

mixture performance characteristics. 

The impact of the new film thickness equations on field mix designs cannot examine the 

desired limits of mixture durability, but can look at how the new film thickness values compare to the 

current film thickness values using "real" mix designs. How will the new film thickness equations 

change the preparation of mix designs? If the INDEX Model or VIRTUAL Model is used for mix 

design, will the range of film thickness values change from the current 8 to 15 microns? 

Actual hot mix asphalt mix designs represent a broad spectrum of mixtures. Mix designs for 

low volume pavements are different than mix designs for Interstate pavements. Typically low volume 

mixes have higher amounts of sand. High traffic mixes require more compaction energy and tend to 

have lower amounts of asphalt binder. Numerous mixture characteristics will influence the final 

computed film thickness value. 

This phase of the study started with 348 approved mix designs for projects on Iowa highways 

and roads. The list included mixes for all traffic levels in all six districts of the State from the 2002 and 

2003 construction seasons. The software used in Iowa for all mix designs is known as SHADES. 

One component of this software measures the accuracy and precision of several components of the 

laboratory mix design process. Each mix design is given a rating of excellent, good, fair, or poor. To 

get a better understanding of the impact of the new film thickness equations, only 280 of the mixtures 

with a good or excellent rating are used. This reduces the variability of the results due to laboratory 

error. The group of 280 mixtures was further reduced to 268 by eliminating the nine 100K mixtures 

and three incomplete mix designs. Table 10 summarizes the breakdown of the 348 mix designs. 

For the purposes of this study, the 268 mix designs represent the "total" population of 

mixtures used in Iowa. The Iowa DOT database does not include the individual gradations of each 

aggregate source used in the mix. To accomplish the Phase III objective, the database was 

supplemented with complete mix design reports for 40 of the 268 mix designs. Ten mix design 

reports were randomly selected from each of the four primary traffic (ESAL) levels to produce a 
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stratified random sample. Only mix designs with the SHADES excellent rating for laboratory mix 

design process were considered for the 40 mix sample to reduce the affect of laboratory variation. 

Table 10 - Summary of Iowa Mix Designs 

Mix Design 
Rating 

Number of Mix Ratings 
Excellent or Good Mix Design 

Rating No. of Mixes Mix Design Level total used 

Excellent 106 100K ESALs 9 0 
Good 174 300K ESALs 58 58 
Fair 52 1M ESALs 85 84 
Poor 16 3M ESALs 81 79 

10/30M ESALs 47 47 
total 348 total 280 268 

This Phase III effort compares the INDEX Model and VIRTUAL Model film thickness values of 

the selected 40-mixture sample to the normal range of film thickness values of the 268-mixture 

population. The steps taken in this analysis included: 

1 ) determine the descriptive statistics of the population, 

2) determine the descriptive statistics of the four traffic subsets of the population, 

3) compute the INDEX and VIRTUAL film thickness values for the 40 mix designs, 

4) determine the descriptive statistics of the 40-mix sample, 

5) determine the descriptive statistics of the four traffic subsets of the sample, 

6) compare the population and sample statistics 

7) draw conclusions regarding the impact of the INDEX and VIRTUAL models. 

The film thickness values of the population set are representative of the range of film 

thickness commonly achieved in Iowa. The database of 268 mixtures includes the film thickness 

value prescribed by the Iowa DOT specifications. This film thickness value FT(DOT) applies 

Equation 5, which is a simplified version of the standard equation (Eq-2). To expand the analysis, the 

standard film thickness values FT(std) for the population were added. As expected, the FT(DOT) 

values are always slightly lower than the FT(std) values. A summary of the statistics of the population 

is given in TABLE 11. The mean (10.27 & 10.58 microns) and median (10.10 & 10.43 microns) 

values are well above the Iowa specification minimum limit of 8.0 microns. Because the median 

values are slightly lower than the mean, the population has a slight positive skew. The skew is also 

reflected in the range, 7.7-14.8 and 7.9-15.3, which is 2.5 microns lower and 4.5 microns higher than 

the mean. The histogram in Figure 24 visually graphs the distribution of FT(DOT) population. A 

majority of the values range between 8.5 and 11.5 microns. 
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Table 11 - Film Thickness Population Statistics for Iowa Mix Designs 

Film Thickness 
Model> 

To 
popu 

tal 
ation 

300K ESAL 
sub-group 

1M ESAL 
sub-group 

3M ESAL 
sub-group 

10/30IV 
sub-c 

ESAL 
roup Film Thickness 

Model> DOT std DOT std DOT std DOT std DOT std 
Mean 10.27 10.58 10.25 10.61 10.12 10.43 10.03 10.33 10.94 11.23 
Median 10.10 10.43 10.06 10.37 9.95 10.27 9.98 10.35 10.65 10.87 
Standard Dev. 1.27 1.33 1.17 1.27 1.10 1.15 1.17 1.21 1.62 1.69 
Skew 0.66 0.63 0.42 0.44 0.28 0.27 0.39 0.35 0.60 0.60 
Minimum 7.73 7.91 8.39 8.64 8.24 8.45 7.73 7.91 8.28 8.53 
Maximum 14.78 15.31 13.44 14.06 12.67 13.08 12.95 13.36 14.78 15.31 
Count 268 268 58 58 84 84 79 79 47 47 

LL 

Figure 24 - Histogram of Film Thickness Population 

The population is further divided into the four traffic (ESAL) categories. These categories 

have different mix design criteria, so it is appropriate to examine the film thickness values of each 

category. With the same component materials, the proportion of each component will change to 

satisfy the desired level of mix design criteria. Therefore, the general range of film thickness values 

should change with each traffic category. TABLE 11 provides a summary of the statistics for each 

population sub-group. In general, the shape of the data distribution (slight positive skew) for each 

sub-group is similar to the entire population. The standard deviation decreases as a result of the 

tighter range of values, even though the smaller data set could cause the standard deviation to 

increase. As shown in FIGURE 25, the trend in the mean film thickness values for the 300K, 1M and 

3M groups reflects the reduction in asphalt binder content associated with higher amounts of 

compaction effort in the design process. The dramatic increase in the 10/30M group is associated 
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with two mix parameters, cleaner gradations (less fine aggregate) and the need to lubricate the mix 

during compaction. 

The study population uses the Iowa DOT's mix design database which only provided details 

of the combined gradation. To generate the INDEX Model and VIRTUAL Model film thickness values, 

the complete mix design reports were recovered to obtain the details of the gradation for each 

aggregate source used in the mix design. With the gradation details, the INDEX Model film thickness 

value FT(INDEX) and VIRTUAL Model film thickness FT(VIRTUAL) were computed for each of the 40 

mix designs in the sample database. The film thickness values of the 40-mix sample set are listed in 

TABLE 12. The sample is plotted in FIGURE 26 with the FT(std) values as the basis (x-axis value) 

for comparison. Overall, the trends between the four film thickness values are very similar to trends 

observed in the generic mix sensitivity analysis in Phase I. 
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Table 12 - Film Thickness Values for 40-Mix Sample 
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ABD2-2008 300K INTER 10.60 11.11 12.78 11.43 -0.51 1.67 0.32 

1BD3-017 300K INTER 12.10 12.73 14.55 13.17 -0.63 1.82 0.45 

ADB2-2029 300K INTER 8.40 8.78 10.18 10.24 -0.38 1.40 1.46 

ABD3-5030 300K SURF 9.66 10.16 11.90 10.47 -0.50 1.74 0.31 

ABD3-6012 300K SURF 9.44 9.51 11.13 9.83 -0.07 1.62 0.32 

ABD3-2012 300K SURF 13.48 14.07 16.48 13.86 -0.59 2.41 -0.21 

ABD3-2009 300K SURF 10.51 10.87 12.59 11.35 -0.36 1.72 0.48 

ABD3-2005 300K SURF 11.33 11.84 13.97 12.22 -0.51 2.13 0.38 

1BD3-015 300K SURF 9.77 10.15 11.63 10.99 -0.38 1.48 0.84 

SWI3-18 300K SURF 11.8 11.56 12.91 11.94 -0.48 1.36 0.38 

4BD3-7 1M BASE 10.75 11.03 12.52 11.57 -0.28 1.49 0.54 

ABD3-5021 1M INTER 8.78 8.87 10.05 9.12 -0.09 1.19 0.25 

4BD3-11 1M INTER 9.36 9.77 11.27 10.11 -0.41 1.50 0.34 

ABD3-17M 1M SHLD 8.46 8.58 9.88 9.38 -0.12 1.30 0.80 

4BD3-17 1M SHLD 8.41 8.53 9.75 9.25 -0.12 1.22 0.72 

4BD3-16 1M SHLD 11.28 11.56 12.94 11.89 -0.28 1.38 0.33 

ABD3-5034 1M SURF 9.36 9.64 10.97 9.94 -0.28 1.34 0.30 

4BD3-8 1M SURF 10.11 10.29 11.62 10.81 -0.18 1.32 0.52 

4BD3-21 1M SURF 10.49 10.80 12.07 10.83 -0.31 1.26 0.03 

4BD3-18 1M SURF 11.40 11.70 13.47 11.44 -0.30 1.77 -0.26 

SWI3-16 3M BASE 10.85 11.04 12.93 11.41 -0.19 1.88 0.37 

ABD3-5004 3M INTER 10.43 10.60 12.35 10.74 -0.17 1.75 0.14 

ABD3-5006 3M INTER 11.67 12.00 13.98 12.09 -0.33 1.98 0.10 

ABD3-2015 3M INTER 11.04 11.08 12.79 10.65 -0.04 1.71 -0.43 

ABD3-5005 3M SURF 9.48 9.52 10.74 9.83 -0.04 1.22 0.32 

ABD3-5009 3M SURF 10.09 10.49 11.31 10.13 -0.40 0.82 -0.35 

ABD3-5007 3M SURF 11.62 12.03 13.84 11.87 -0.41 1.81 -0.16 

ABD2-2032 3M SURF 10.20 10.64 11.99 10.37 -0.44 1.35 -0.27 

S W13-21 3M SURF 10.46 10.74 11.93 11.23 -0.28 1.20 0.49 

ABD3-2004 3M SURF 8.34 8.65 9.75 9.38 -0.31 1.10 0.72 

ABD3-2017 10M BASE 9.42 9.63 11.00 9.73 -0.21 1.38 0.10 

SWI3-25 10M BASE 10.43 10.71 12.05 11.05 -0.28 1.34 0.35 

SWI3-27 10M INTER 10.74 11.00 12.92 10.99 -0.26 1.92 -0.01 

ABD3-2026 10M SURF 12.72 13.10 14.88 12.73 -0.38 1.78 -0.38 

4BD3-19 10M SURF 12.52 12.80 14.32 11.76 -0.28 1.52 -1.03 

ABD3-6004 30 M BASE 8.23 8.48 9.77 8.57 -0.25 1.29 0.09 

3BD3-3026 30M INTER 14.08 14.45 16.01 12.86 -0.37 1.57 -1.59 

ABD3-6005 30 M INTER 9.85 10.18 11.53 10.06 -0.33 1.35 -0.12 

ABD3-2032 30 M INTER 9.41 9.32 10.84 9.46 0.09 1.51 0.14 

ABD3-6006 30M SURF 10.61 10.96 12.47 10.54 -0.35 1.51 -0.41 
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Figure 26 - Film Thickness Comparison for 40-Mix Sample 

Like the 268-mix population, the 40-mix sample was analyzed for general descriptive 

statistics. The summary of the sample's descriptive statistics is shown in TABLE 13. The mean 

values differ for each film thickness model. The FT(DOT) is lower than the FT(std) as expected. The 

FT(INDEX) mean value is 1.5 microns above the FT(std) as expected. And the FT(VIRTUAL) is 

between the FT(std) and FT(INDEX), which fits the general trend for the VIRTUAL model. The 

median values are very close to the mean for three of the four models, but all four sets of data shown 

some degree of positive skew (0.36-0.57). The range of the 40 values is lowest for the VIRTUAL 

model (5.3 microns) and highest for the INDEX Model (6.7 microns). Only the range of film thickness 

values for the INDEX Model (9.7-16.5) would not fit within the Iowa DOT specification limits of 8 to 15 

microns. 
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Table 13 - Film Thickness 40-Mix Sample Statistics 

FT(DOT) FT(std) FT(INDEX) FT(VIRTUAL) 
Mean 10.42 10.72 12.25 10.88 
Median 10.45 10.72 12.06 10.82 
Standard Deviation 1.37 1.45 1.66 1.19 
Skew 0.57 0.55 0.55 0.36 
Minimum 8.23 8.48 9.75 8.57 
Maximum 14.08 14.45 16.48 13.86 
Count 40 40 40 40 

The 40-mix sample set is further divided into four 10-mix subsets for each of the traffic 

(ESAL) levels. While it is possible to create a list of descriptive statistics for each subset, the number 

of values in each set is too small to realistically measure the shape of the distribution. It is 

appropriate to limit the examination to the mean and median values for general trends between the 

film thickness models. TABLE 14 provides a summary of the sample subset means and median 

values. The median values are lower than, or equal to, the mean values. The trend between the 

means of the film thickness equation models shows the FT(DOT) always as the lowest values and the 

FT(INDEX) as the highest values. The FT(VIRTUAL) values are higher than the FT(std) values. The 

trend across traffic levels shows the 1M mixes have the lowest film thickness, but the ranking of the 

FT(INDEX) and FT(VIRTUAL) values varies for each traffic level. 

Table 14 - Film Thickness Sample 10-Mix Subset Statistics 

FT(DOT) FT (std) FT(INDEX) FT( VIRTUAL) 
mean 

median 

mean 

median 

mean 

median 

mean 

median 

300K ESAL 
10.64 

10.55 
11.07 

10.99 
12.81 

12.69 
11.55 

11.39 

1M ESAL 
9.84 

9.74 
10.08 

10.03 
11.45 

11.45 
10.43 

10.46 

3M ESAL 
10.42 

10.44 
10.68 

10.69 
12.16 

12.17 
10.77 

10.69 

10/30M ESAL 
10.80 

10.52 
11.06 

10.83 
12.58 

12.26 
10.77 

10.77 

With this information about the population and sample of film thickness values, can we use 

the results of the sample to hypothesize the impact of the INDEX Model and VIRTUAL Model on the 

film thickness of the population of mix designs? The first question that must be answered is whether 

the sample is a representative subset of the population. The mean values of the FT(DOT) sample 

and FT(std) sample are slightly higher than the population values. The median values of the sample 

are almost equal to the sample mean, unlike the population; but, the sample shows a similar level of 

data skew (population -0.64 and sample -0.56). The amount of standard deviation is comparable 
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between the population and sample statistics and the standard deviation is substantially greater than 

the difference between the means. Using a standard two-tailed t-test for equal means of the FT (std) 

population and FT(std) sample, the probable variation of the mean (t = 0.53) falls well below the 

critical variation (t = 1.97) for 95 percent confidence. From this comparison, we can conclude that the 

sample is representative of the population. Therefore the INDEX Model and VIRTUAL Model values 

from the sample can be viewed as representative of their impact on the population of film thickness 

values. 

How would the INDEX Model and VIRTUAL Model impact Iowa's film thickness values. One 

approach looks at the differences between the new models and the FT(std) values. This difference 

can be expressed as FT(x)-FT(std). FIGURE 27 shows the histogram of the differences for the DOT, 

INDEX and VIRTUAL values against the FT(std) values. As expected, the FT(DOT) values are very 

tightly grouped and slightly lower than the FT(std) values. Generally in the range of -0.6 to 0.0 

microns. The FT(INDEX) values are also tightly grouped and positively skewed in the general range 

of 1.2 to 2.0 microns. The FT(VIRTUAL) values show a much broader distribution with typical values 

between -0.6 and +1.0 microns. These FT(VIRTUAL) differences demonstrate the power of the 

VIRTUAL Model to reflect the uniqueness of each mix design better than the standard two-

dimensional approach currently used. 
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Figure 27 - Histogram of Film Thickness Change 

Another approach to examine the impact starts with the mean values of the sample subsets. 

The trend of mean values in the sample subsets is not the same as the trend in the population 

subsets, but the range of mean values for FT(DOT) and FT (std) are generally the same (10 to 11 

microns). Since the number of values in the sample subset is only 10, the standard deviation values 

are not strong indicators. To establish a reasonable range for the sample subset, the standard 

deviations from the total sample are used. Figure 28 shows the nominal range of all four film 
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thickness models based on the sample subset means plus/minus twice the sample standard 

deviation. Superimposed over the shaded box representing the specification range (8 to 15 microns), 

the INDEX Model would require an increase in the upper limit of the specification range for three of 

the four traffic levels. The VIRTUAL Model ranges are within the current specification range and are 

generally between 8.5 and 13 microns in three of the four levels. Taking a conservative approach, a 

specification range of 8 to 14 microns would be sufficient to cover the expected range of VIRTUAL 

Model film thickness values based on the sample database. The range for the INDEX Model would 

be 8 to 16 microns. 

DOT il STD H INDEX d VIRTUAL 

(Mean Film Thickness +/- 2 std dev) 

300K 1M 3M 

JMF by ESAL catagory 

!» 14.00 

2 12.00 -

« 10.00 

10-30M 

Figure 28 - Statistical Range of Film Thickness for Sample-Traffic Level Subgroups 

A similar approach compares the population of FT(DOT) and FT(std) values to the sample 

FT(INDEX) and FT(VIRTUAL) values. The analysis already demonstrated that the sample database 

is statistically similar to the population. Since the Iowa DOT specification range for film thickness 

does not distinguish between traffic levels, the analysis based on the range of each Model is a 

reasonable approach. In addition, the statistics are stronger for the sample (40 data points) than for 

the sample subsets (10 data points each). Figure 29 shows the range of each Model based on the 

mean value plus/minus two standard deviations. The background shading represents the current film 

thickness specification limits. The figure shows that the current range of film thickness values for the 
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DOT and standard models generally falls between 8 and 13 microns. The INDEX Model ranges 

between 9 and 15.5 microns. The VIRTUAL Model is a slightly narrower range from 8.5 to 13.5 

microns. 

(range = mean +/- 2 std dev) 

6 

4 

c 
o 

"3 0 

1 
to 

DOT(population) STD( population) INDEX(sample) 

Film Thickness Model 

VIRTUAL(sarple) 

Figure 29 - Film Thickness Range on Population Basis 

As the plotted sample data in Figure 26 shows, we would expect the INDEX range to be 

higher and broader than the DOT and standard model. The linear trend is 1.5 microns higher at lower 

film thickness values and 2.0 microns higher near the upper film thickness range. The extent of the 

INDEX range is reflected in the higher standard deviation (1.66) and the increased slope of the linear 

trend. The shape of the VIRTUAL trend in Figure 26 is not linear. Similar to the sensitivity study in 

Phase I, the VIRTUAL Model computes film thickness values above the standard model at lower film 

thickness levels, but tends to flatten and generate lower values at the higher film thickness level. The 

standard deviation for the VIRTUAL Model sample (1.19) is smaller than the standard model and is 

reflected in the flatter slope of the VIRTUAL second-order polynomial trend. 

Phase III Summary 

This phase of the study uses the statistical distribution of a sample of 40 mix designs used on 

Iowa DOT projects to predict the nominal range of film thickness values for the entire population of 

Iowa mixes. Although the specification limits are 8 to 15 microns, the typical range of film thickness 

values applying the standard and DOT models is 8 to 13 microns. Very similar to the results of the 

Phase I sensitivity study, the impact of the INDEX Model on current specification limits would 
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increase both the lower and upper limits to 9 to 15.5 microns. The unique shape of the trend of 

VIRTUAL Model film thickness values would increase the lower limit to 8.5 microns. The upper limit 

is similar to the observed values for the standard model and could be set at 13.5 microns. 
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Chapter 6. Summary and Conclusions 

The current standard model for calculating film thickness is not sufficiently detailed to adequately 

reflect differences in hot mix asphalt mixtures; and therefore, has limited value as a tool to evaluate 

research or mix designs. Modifications to the model (or replacement of the model) would give 

practitioners a better tool to assess the durability potential of a hot mix asphalt mixture. This study 

provides the asphalt community with new models with improved approaches to calculating film 

thickness that better reflect the unique properties of each hot mix asphalt mixture. The study 

examines the historical development and application of the standard film thickness model. The 

proposed film thickness models account for the individual aggregate source gradations, specific 

gravities and particle shape that comprise the hot mix asphalt blend. The study provides a practical 

approach to the significant contribution of the mineral filler as both an aggregate and asphalt binder 

extender. These parameters were not adequately accounted for prior to this study. Based on the 

analysis in this study, future studies of hot mix asphalt durability will have a more accurate perception 

of film thickness to compare differences in hot mix asphalt durability. 

Film thickness is a computed, not measured, value that defines the thickness of the effective 

asphalt binder coating on each particle in the mixture and is used to insure that the HMA has 

adequate asphalt binder to achieve a desired level of mix durability. The procedure for computing the 

surface area was derived from the 1940's Hveem mix design process used to determine a "target" 

asphalt binder content and only requires the weighted proportion of the combined aggregate on each 

sieve. Any differences in aggregate particle specific gravity, shape, and texture are not taken into 

account. The film thickness value "assumed that all the asphalt exists in the form of uniform 

films as long as appreciable air voids exist." (9) The authors recognized that this assumption was 

not totally correct, but it was adequate for the purpose of their study. This research was undertaken 

to replace the standard model using the knowledge and tools available today. 

Most of the current HMA research efforts focus on rutting and fatigue. Durability is the third 

key mixture performance criteria. The contractor is focused on keeping the asphalt binder content to 

a minimum, but the agency/owner's interest should insure that the finished pavement is durable 

(adequate asphalt binder content). Film thickness is one computed parameter to define sufficient 

asphalt binder for durability. Both film thickness and VMA are products of durability research in the 

mid-1950s, but later studies report that neither approach to define mixture durability was founded on 

extensive research. Research in the 1960s and 1970s conclude that durability is a function of film 

thickness, air voids, and permeability. Recent studies, starting in the mid-1990s, developed mixed 

results regarding the correlation between film thickness and mixture durability. Although some 

studies questioned the film thickness equation, they all used the 1942 Hveem table to determine 

aggregate surface area and applied Campen's 1959 approach for determining film thickness. 
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The current procedure for determining surface area of the total aggregate blend only requires 

the gradation expressed as the total percent (by weight) passing on each sieve. Each percent 

passing value represents all particles smaller than that sieve. Therefore, the surface area values are 

not a direct expression of total surface area for aggregate particles on a specific sieve and do not 

account for differences in aggregate particle specific gravity. Studies that examine differences in film 

thickness values in an attempt to identify trends in HMA mixture performance are not comparing 

equivalent film thickness values when the mixtures have aggregates with dissimilar specific gravities. 

The procedure for computing the film thickness value should account for known characteristics of the 

aggregate and may lead to a better understanding of the impact of film thickness on mixture 

performance. 

New Models 

The current surface area factors are a product of a period time when engineers developed 

charts, tables and nomographs to simplify the calculations. Any new approach to measuring film 

thickness should account for today's common practice that the aggregate gradation is a blend of 

multiple aggregates from different sources and that the as-constructed density is different than the 

mix design density. The proposed INDEX Model uses the fundamental principles of weight, volume, 

specific gravity, and particle geometry to calculate a theoretical surface area of each aggregate 

particle. The resulting aggregate surface area is a better approximation of the true surface area. The 

VIRTUAL Model approach is a further improvement using theoretical techniques to place the particles 

in a virtual three-dimensional matrix, fills the void space with effective asphalt, and measures the 

thickness of the asphalt from the particle surface to the air void space. The VIRTUAL Model requires 

knowledge of the HMA mixture volumetrics. 

Both models account for multiple aggregate sources, including differences in gradation and 

specific gravity. The INDEX Model also accounts for particle shape, but cannot reflect the impact of 

as-constructed air voids. The VIRTUAL Model accounts for as-constructed air voids, but does not 

adjust for different particle shapes. 

A large portion of the aggregate surface area is attributed to the mineral filler. For this study, 

particles less than 10-micron size are not included in the determination of particle surface area, but 

are considered asphalt binder extender. The volume of these particles is added to the asphalt binder 

in the VIRTUAL Model. 

The study ran a series of analyses on a family of generic mixes and examined the differences 

between the current film thickness "Standard Model" (Eq 2), the proposed INDEX Model (Eq 10), and 

the proposed VIRTUAL Model (Eq 11). 

• Gradation - The Standard Model film thickness increases as the gradations change from fine 

blends to coarse blends. The INDEX Model shows a similar increasing trend, but the film 
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thickness is greater than the Standard Model and reflects the change in treatment of mineral 

filler. The VIRTUAL Model shows a similar increasing trend for the fine graded blends, but 

the trend becomes relatively flat as the gradation becomes coarser. The visual break in the 

trend corresponds to the change in the slope of the fine aggregate portion of the gradation. 

Specific Gravity - The Standard Model does not directly account for differing aggregate 

specific gravities. When the asphalt binder content is held constant, both the INDEX Model 

and VIRTUAL Model show that the film thickness increases as aggregate specific gravity 

increases; but this analysis is not accurate. The correct analysis held the volume of 

aggregate and asphalt binder constant and reflected the difference in aggregate specific 

gravity in the weight proportions of the materials. The computed film thickness using the 

Standard Model shows a decreasing film thickness as the Gsb increases. The INDEX Model 

correctly computes the same film thickness. 

Mineral Filler Content and Gradation - Most HMA mix designers have no detailed information 

on the composition of the mineral filler, but it is the gradation of the mineral filler that has a 

significant impact on the calculated surface area. All three models react similarly to the 

quantity of mineral filler. A one percent change in the amount of mineral filler changed the 

film thickness by approximately 0.5 micron. The Standard Model does not show any change 

in film thickness due to the gradation of the mineral filler. There is a 4 micron film thickness 

difference between the fine and coarse mineral filler gradations for both the INDEX Model 

and VIRTUAL Model. The practicality of measuring mineral filler gradation may limit the use 

of this feature. 

Particle Shape -. The INDEX Model is the only model that has the ability to account for 

differences in particle shape. The INDEX Model shows that the film thickness of spherical 

shape particles is higher than cubical shaped particles and a general increasing trend in the 

film thickness value as the particles become elongated. 

Degree of compaction - The Standard Model and INDEX Model compute a theoretical film 

thickness without regard to the orientation of the particles. The VIRTUAL Model reflected an 

increase in the film thickness as the density increased (lower VMA and air voids) and a 

diminishing decrease in film thickness as the density decreased. Through the use of the 

VIRTUAL Model, it would be possible to define the minimum required film thickness on the 

basis of the level of compaction when the mixture is placed. 

Multiple Aggregate Source Blends - Two gradation blends using four aggregate sources and 

two aggregate specific gravities were combined into 32 unique mixtures. Mix design software 

was used to estimate the mixture's volumetric properties. The Standard Model film thickness 

does not change over the series of 16 test mixtures for each gradation. The INDEX Model 
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and VIRTUAL Model film thickness values reflect changes to the combined aggregate 

specific gravity, proportion of sources, and blended gradation. 

The INDEX Model is still an "index" that measures the thickness of the asphalt film with the 

simplifications that the aggregate particle surface area coated by the asphalt binder is a flat surface, 

not 3-D surface, and each particle is separately, uniformly, and equally coated. Converting the three-

dimensional (3-D) particle surface area to a 2-D surface generates errors in the actual film thickness. 

The 2-D approximation is reasonably accurate for particles down to the 1.18-mm sieve, but below the 

1,18-mm sieve, the difference increase dramatically. If a film thickness model used the 3-D shell 

volumes, the analysis would require an iterative process to match asphalt binder volume to 

accumulated film thickness shell volume and the impact of the mineral filler particles would be even 

greater. This study did not pursue this approach. 

Research Comparisons 

The INDEX Model and VIRTUAL Model were applied to previous HMA durability studies to 

determine if the improvements in the computed film thickness would improve the correlation between 

film thickness and HMA durability. The two selected studies subjected the HMA to both short-term 

aging and long-term aging and measured the properties of the aged mixes and aged binders. 

The Auburn study involved six mixtures using a single gradation and six binder contents. 

Most of the correlations of the standard film thickness to mixture properties (like resilient modulus) 

and recovered binder properties (like penetration) are very sound and agree with general engineering 

expectation. Injecting the new film thickness values into the study's data created similar well-

correlated parameters. The INDEX Model film thickness tends to provide higher values than the 

standard equation and the VIRTUAL Model cuts across the other two film thickness values. The 

reduction in film thickness at high binder contents reflects the ability of the VIRTUAL Model to 

account for three-dimensional distribution of the binder and aggregate. 

Collectively, the measured response of the recovered binder follows the expected trend, but 

the comparison of the correlation and regression values for the three film thickness datasets showed 

no practical change or improvement. Resilient Modulus was used as a non-destructive test to 

measure the response of the same set of mixture specimens and the short-term aged and long-term 

aged regression curves agreed with the expected trend. The results of the IDT to failure are only 

provided for the long-term aged condition and the results are very similar to the Resilient Modulus 

testing. 

The University of Florida study examined the affect of gradation on mixture durability. The 

study used six mixtures with different gradations from one aggregate source and the binder content 

varied to achieve 4 percent air voids at the same compaction effort. The film thickness values 
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computed by the INDEX Model are higher than the standard values. The values computed by the 

VIRTUAL Model are higher for thin film, finer gradations and lower for thick film, coarser gradations. 

While there are differences between the mixtures, we can examine the recovered binder 

properties because they are isolated from the influence of the aggregate. In every analysis group, the 

standard and INDEX Model correlation values are better than the VIRTUAL Model correlation values. 

The consistency of the penetration, viscosity, and Complex Modulus data trends, even at relatively 

nominal levels of correlation, could conclude that film thickness is a factor in determining the durability 

of different mixtures, but this is a weak conclusion in light of the very small database in this study. 

The key to examining the data is comparing the rate of measured property change between 

the short-term aged value and long-term aged value. This was done for both the extracted binder 

and mixture properties. The trend for change in binder properties agrees with the expectation that 

higher values of film thickness will slow the rate of binder aging. Only one of the six data sets for 

percent change in mixture properties generated a good correlation value in the initial assessment. 

Third-order polynomial equations were used to create most of the "best-fit" regression curves 

for sets of data. The third-order regression curves modeled the changes to the values associated 

with low and high film thickness mixtures 

Durability studies provide a target minimum film thickness value to achieve a desirable level 

of durability. The Florida study demonstrates the complexity of achieving durability and the ability to 

carry traffic load. Film thickness cannot bracket the intended level of rutting or fatigue characteristics 

for a HMA mixture. In concert with other mixture characteristics (like gradation, CAA, FAA, and 

density), film thickness may be one of a group of input parameters for other mixture performance 

criteria. 

Mix Design Criteria 

The third phase of the study examined the impact of the new film thickness equations on field 

mix designs to determine if the range of film thickness specification criteria would change. The study 

started with a population of good or excellent mix designs. The distribution of film thickness values 

for the population was compared to a randomly selected sample set of 40 mixtures. Film thickness 

values using the INDEX Model and VIRTUAL Model were computed for the 40 sample mix designs. 

The trends for the 40-mix sample set between the film thickness values of all four models are 

very similar to trends observed in the generic mix sensitivity analysis in Phase I. 

The standard model film thickness sample data set was determined to be statistically 

representative. Therefore the INDEX Model and VIRTUAL Model values from the sample can be 

viewed as representative of their impact on the population of film thickness values. The film thickness 

values of the INDEX model are tightly grouped and higher than the standard model and the VIRTUAL 

values are much broader distributed above and below the standard model. Two other approaches 
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compared the current specification limits to the statistical range of the new film thickness models. 

The INDEX Model would require an increase in the upper limit of the specification range. The 

VIRTUAL Model range is generally narrower than the current specification range. The current range 

of film thickness values for the standard model generally falls between 8 and 13 microns. The INDEX 

Model ranges between 9 and 15.5 microns. The VIRTUAL Model is a slightly narrower range from 

8.5 to 13.5 microns. 

The VIRTUAL Model reflects the uniqueness of each mix design better than the standard 

two-dimensional approach currently used. A specification range of 8 to 14 microns would be 

sufficient to cover the expected range of VIRTUAL Model film thickness values. 

Future Study 

Durability is a key component of HMA performance, but does not get sufficient research effort 

to better define differences between good and poor mixtures. Meaningful durability studies must 

isolate the rate of binder aging (durability). This will require careful mixture preparation, short-term 

and long-tern aging, non-destructive mixture testing, careful asphalt binder extraction and recovery, 

and performance grade binder testing. Laboratory studies should include multiple binder contents for 

each mix to best measure the value of film thickness as an indicator of mixture durability. 

Film thickness is a key component of mixture durability. New durability studies should apply 

the INDEX Model and VIRTUAL Model to better account for differences between mixtures. 

The INDEX Model and VIRTUAL Model should be validated by laboratory studies. The 

sensitivity study described in the model development phase should be replicated with a series of real 

mixtures. A better understanding of the gradation of mineral filler would improve the computed film 

thickness value and better distinguish between coated particles and binder extender. The shape 

factors applied to the INDEX Model would be better quantified using the Aggregate Imaging System. 

It is possible that new durability studies of multiple mixtures will still conclude that film 

thickness alone does not adequately quantify mixture durability. Previous studies have hypothesized 

that mixture durability relative to coarse aggregate is different from mixture durability relative to fine 

aggregate. The VIRTUAL Model suggests that there are relationships between the fine aggregate 

gradation and the binder content. New studies should take an in-depth look at defining the mastic 

component of a mixture (asphalt binder and a portion of the fine aggregate). How does mixture 

durability relate to the coarse aggregate fraction? To the fine aggregate fraction? And to the mastic 

fraction? Does one of these fractions dominate durability or does each play a role with different 

criteria? 
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Appendix A - Building New Models 

Table A1 - General Gradations for Film Thickness Sensitivity Study 

Table A2 - Film Thickness for Gradation and Aggregate Specific Gravity Sensitivity (equal weight) 

Table A3 - Gradation Fineness Ratios 

Table A4 - Film Thickness for Aggregate Specific Gravity Sensitivity (equal binder volume) 

Table A5 - Mineral Filler Gradation Summary 

Table A6 - Film Thickness Values for Mineral Filler Sensitivity 

Table A7 - Mineral Filler Values for Particle Shape Sensitivity 

Table A8 - Mineral Filler Values for Degree of Compaction Sensitivity 

Table A9 - Mineral Filler Values for Fine Blend-Multiple Source Sensitivity 

Table A10 - Mineral Filler Values for Coarse Blend-Multiple Source Sensitivity 

Table A11 - 2D to 3D Film Thickness Reduction Factors 
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Table A1 - General Gradations for Film Thickness Sensitivity Study 
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A 100.0 100 100 96 90 74 57 40 28.0 18.0 12.0 6.0 5.40 4.20 3.00 2.550 1 1 1 1.1 1.1 

B 100.0 100 100 96 88 68 48 32 22.0 15.0 10.0 6.0 5.40 4.20 3.00 2.550 1 1 1 1.1 1.1 

C 100.0 100 100 95 85 60 40 26 17.0 12.0 9.0 6.0 5.40 4.20 3.00 2.550 1 1 1 1.1 1.1 

0 100.0 100 100 93 81 52 34 22 14.5 10.0 8.0 6.0 5.40 4.20 3.00 2.550 1 1 1 1.1 1.1 

E 100.0 100 100 91 75 45 30 20 13.0 9.0 7.0 6.0 5.40 4.20 3.00 2.550 1 1 1 1.1 1.1 

SPEC 
LIMITS 

MAX 100 90 58 10 SPEC 
LIMITS MIN 100 90 28 2 

Table A2 - Film Thickness Values for Gradation 
and Aggregate Specific Gravity Sensitivity (for equal weight mixes) 
Gsb 2.450 Gsb 2.550 Gsb 2.650 Gsb 2.750 

GRADATION std index virtual std index virtual std index virtual std index virtual 

A 6.40 6.79 7.00 6.40 7.07 7.30 6.40 7.35 7.61 6.40 7.62 7.94 

B 7.24 7.72 7.66 7.24 8.03 8.00 7.24 8.35 8.35 7.24 8.66 8.74 

C 8.06 8.63 8.29 8.06 8.98 8.67 8.06 9.34 9.08 8.06 9.69 9.53 

D 8.77 9.44 8.48 8.77 9.82 8.83 8.77 10.21 9.21 8.77 10.60 9.62 

E 9.35 10.10 8.59 9.35 10.52 8.92 9.35 10.93 9.28 9.35 11.34 9.65 

Table A3 - Gradation Fineness Ratios 

Sieve Ratio (CA/FA) AASHTO T 27 

CA 4.75 4.75 4.75 2.36 2.36 1.18 Fineness 
Modulus Gradation FA 1.18 0.6 0.3 0.6 0.3 0.3 

Fineness 
Modulus 

A 1.85 2.64 4.11 2.04 3.17 2.22 3.81 

B 2.13 3.09 4.53 2.18 3.20 2.13 4.17 

C 2.31 3.53 5.00 2.35 3.33 2.17 4.51 

D 2.36 3.59 5.20 2.34 3.40 2.20 4.785 

E 2.25 3.46 5.00 2.31 3.33 2.22 5.01 
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Table A4 - Film Thickness Values for Aggregate Specific Gravity Sensitivity 
(for equal binder volume mixes) 

Gsb 2.45 2.55 2.65 2.75 
Pbe 4.50 4.33 4.17 4.03 
Pbe 5.60 5.39 5.20 5.01 
MIX SA (std) FT (std) SA (std) FT (std) SA (std) FT (std) SA (std) FT (std) 

A 7.199 6.40 same 6.14 same 5.91 same 5.69 
B 6.364 7.24 same 6.95 same 6.69 same 6.44 
C 5.715 8.06 same 7.74 same 7.44 same 7.17 
D 5.249 8.77 same 8.43 same 8.11 same 7.81 
E 4.927 9.35 same 8.98 same 8.63 same 8.32 

SA (index) FT (index) SA (index) FT (index) SA (index) FT (index) SA (index) FT (index) 

A 6.781 6.79 6.515 6.79 6.269 6.78 6.041 6.79 
B 5.97 7.71 5.736 7.71 5.519 7.70 5.318 7.71 
C 5.336 8.63 5.127 8.62 4.933 8.62 4.754 8.62 
D 4.879 9.44 4.688 9.43 4.511 9.42 4.347 9.43 
E 4.558 10.10 4.38 10.10 4.214 10.09 4.061 10.09 

Table A5 - Mineral Filler Gradation Summary 

Percent Passing (mm) 

Gradation 0.075 
0.050/ 
0.038 

0.02 0.01 0.005 0.001 

coarse 100 80 50 25 15 5 
dense 100 90 70 50 30 10 
fine 100 95 85 70 50 15 

average 100.0 96.3 72.9 49.1 27.3 6.6 
median 100.0 97.8 78.0 47.9 26.4 6.5 
std dev 0.0 3.0 16.4 16.0 12.4 3.4 

Table A6 - Film Thickness Values for Mineral Filler Sensitivity 

FT (std) FT (index) FT (virtual) 

Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 

4.5 8.82 9.79 9.48 
Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 

5 8.55 9.51 9.18 Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 

5.5 8.30 9.24 8.91 

Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 

6 8.06 8.98 8.67 

Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 

6.5 7.83 8.74 8.44 

Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 7 7.62 8.52 8.23 

Mineral 
Filler 
Quantity 
(percent 
passing 
0.075-mm) 

7.5 7.42 8.30 8.04 

Mineral 
Filler 
Gradation 

coarse 8.06 7.30 7.08 Mineral 
Filler 
Gradation 

dense 8.06 8.98 8.67 
Mineral 
Filler 
Gradation fine 8.06 11.34 10.77 
Analysis based on gradation C, Gsb=2.55 
All MF passing the 0.010 sieve is considered binder extender. 
Binder extended is included with binder volume for INDEX Model. 
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Table A7 - Film Thickness Values for Particle Shape Sensitivity 

Shape Shape Factor 
FT (std) FT (index) FT (virtual) Shape 

Volume Surface Area 
FT (std) FT (index) FT (virtual) 

Cube 1:1 1.0 1.2 8.06 8.67 8.67 
Cube 2:1 2.0 2.1 8.06 9.15 8.67 
Cube 3:1 3.0 2.9 8.06 9.44 8.67 
Sphere 1:1 1.0 1.0 8.06 9.32 8.67 
Sphere 2:1 2.5 2.0 8.06 10.09 8.67 
Sphere 3:1 4.0 3.0 8.06 10.30 8.67 

Table A8 - Film Thickness Values for Degree of Compaction Sensitivity 

Air Voids VMA FT (std) FT (index) FT (virtual) 
2 11.73 8.06 8.98 10.04 
3 12.63 8.06 8.98 9.17 
4 13.50 8.06 8.98 8.67 
5 14.36 8.06 8.98 8.33 
6 15.20 8.06 8.98 8.11 
8 16.83 8.06 8.98 7.79 
10 18.40 8.06 8.98 7.58 

Pb = 5.6 Pbe = 4.5 Gb = 1.035 

Table A9 - Film Thickness Values for Fine Blend-Multiple Source Sensitivity 

Mix No. VMA FT (std) FT (index) FT (virtual) 
1 15.2 8.24 9.45 8.84 
2 15.4 8.24 9.86 9.14 
3 15.2 8.24 9.47 8.87 
4 15.5 8.24 9.88 9.14 
5 15.3 8.24 9.47 8.86 
6 15.6 8.24 9.88 9.13 
7 15.4 8.24 9.49 8.86 
8 15.7 8.24 9.90 9.13 
9 15.4 8.24 9.72 9.04 
10 15.7 8.24 10.15 9.33 
11 15.5 8.24 9.74 9.04 
12 15.8 8.24 10.17 9.33 
13 15.6 8.24 9.73 9.03 
14 15.8 8.24 10.17 9.36 
15 15.6 8.24 9.76 9.07 
16 15.9 8.24 10.19 9.36 

Va = 4 P d - Pbe = 5.0 Gb - 1.02 
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Table A10- Film Thickness Values for Coarse Blend-Multiple Source Sensitivity 

Mix No. VMA FT (std) FT (index) FT (virtual) 
1 15.0 9.17 10.48 9.09 
2 15.0 9.17 10.54 9.13 
3 15.0 9.17 10.50 9.10 
4 15.0 9.17 10.55 9.14 
5 15.3 9.17 10.53 9.10 
6 15.3 9.17 10.59 9.14 
7 15.3 9.17 10.54 9.12 
8 15.4 9.17 10.60 9.12 
9 15.3 9.17 10.92 9.34 

10 15.3 9.17 10.98 9.38 
11 15.3 9.17 10.94 9.35 
12 15.3 9.17 11.00 9.40 
13 15.6 9.17 10.97 9.36 
14 15.7 9.17 11.03 9.37 
15 15.7 9.17 10.99 9.34 
16 15.7 9.17 11.05 9.39 

Va = 4 P b = Pbe = 4.9 Gb = 1.02 

Table A11 - 2D to 3D Film Thickness Reduction Factors 

Sieve (mm) 19 12.5 9.5 4.75 2.36 1.18 .600 .300 .150 .075 .038 .020 .010 .005 

Avg.Part.Dia. 22 15.7 11 7.12 3.55 1.77 .890 .450 .225 .112 .056 .029 .015 .007 

FT (microns) 
20 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.92 0.86 0.77 0.65 0.53 0.41 0.29 

15 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.94 0.89 0.81 0.70 0.58 0.46 0.34 

12 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.91 0.84 0.74 0.62 0.50 0.37 

10 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.92 0.86 0.77 0.66 0.53 0.41 

8 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.97 0.94 0.88 0.80 0.70 0.58 0.44 

6 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.97 0.95 0.91 0.84 0.75 0.63 0.50 
Factor = a multiplier to FT (std) or FT (index) value to adjust the film thickness to the actual film of a 3D particle 
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Appendix B - Data for Auburn Study 

Table B1 - Measured Asphalt Binder Properties (STOA and LTOA) 

Table B2 - Measure HMA Properties (STOA, LTOA, ratio) 

Figure B1 - Impact of STOA and LTOA on Penetration of Binder 

Figure B2 - Impact of STOA and LTOA on Viscosity of Binder 

Figure B3 - Impact of STOA and LTOA on Complex Modulus of Binder 

Figure B4 - Impact of STOA and LTOA on Phase Angle of Binder 

Figure B5 - Impact of STOA and LTOA on Resilient Modulus of Mixture 

Figure B6 - Impact of STOA and LTOA on Indirect Tensile Strength, Strain, and Modulus of Mixture 
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Table B1 - Measured Asphalt Binder Properties (STOA and LTOA) 

FT (reported) Penetration Viscosity Complex Modulus Phase Angle FT (reported) 
STOA LTOA STOA LTOA STOA LTOA STOA LTOA 

microns 0.1 mm 0.1mm poises poises Pa M Pa degrees degrees 

3.71 31.3 24.6 12,621 47,444 *2,090 2,500 *81.84 36.54 
5.57 35.3 25.7 8,099 46,584 3,590 2,250 79.08 36.51 
7.42 39.6 27.3 5,261 43,472 2,270 1,740 78.60 37.88 
9.28 43.6 29.0 4,346 39,401 2,460 1,530 82.42 36.89 

11.15 54.0 33.6 2,763 30,633 1,310 1,220 84.27 40.19 
13.01 56.6 34.3 2,367 28,976 1,220 *1,710 84.56 *39.80 

* possible outlier 

Table B2 - Measure HMA Properties (STOA, LTOA, ratio) 

FT (reported) Resilient Modulus Indirect Tensile FT (reported) 
STOA LTOA LT/ST strength strain Modulus 

microns MPa MPa MPa Percent MPa 

3.71 8,184 12,293 1.50 1.524 0.440 3.464 
5.57 6,357 9,398 1.48 1.373 0.545 2.519 
7.42 4,027 5,240 1.30 1.076 0.657 1.638 
9.28 2,910 3,716 1.28 0.942 0.738 1.276 

11.15 2,572 2,696 1.05 0.734 0.927 0.792 
13.01 1,958 2,020 1.03 0.62 1.245 0.498 
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Figure B1 - Impact of STOA and LTOA on Penetration of Binder 
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Figure B2 - Impact of STOA and LTOA on Viscosity of Binder 
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Figure B3 - Impact of STOA and LTOA on Complex Modulus of Binder 
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Appendix C - Data for Florida Study 

Table C1 - Gradations 

Table C2 - Mixture Volumetric Properties 

Table C3 - Measured Asphalt Binder Properties (STOA,LTOA.% diff) 

Table C4 - Measure HMA Properties (STOA, LTOA, %diff) 

Figure C1 - Impact of STOA and LTOA on Penetration of Binder 

Figure C2 - Impact of STOA and LTOA on Viscosity of Binder 

Figure C3 - Impact of STOA and LTOA on Complex Modulus 

Figure C4 - Impact of STOA and LTOA on Phase Angle 

Figure C5 - Percent Change in Binder Properties 

Figure C6a - Percent Change in Mix Properties 

Figure C6b - Percent Change in Mix Properties 
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Table C1 - Gradations 
Mix No. 19 12.5 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075 
C1 100 97.4 90.0 60.2 33.1 20.3 14.7 10.8 7.6 4.8 
C2 100 91.1 73.5 47.1 29.6 20.2 14.4 10.4 6.7 4.8 
C3 100 97.6 89.3 57.4 36.4 24.0 17.7 12.9 9.2 6.3 
F1 100 95.5 85.1 69.3 52.7 34.0 22.9 15.3 9.6 4.8 
F2 100 90.8 78.0 61.3 44.1 34.7 23.6 15.7 9.1 6.3 
F3C4 100 94.5 84.9 66.5 36.6 26.1 20.5 13.6 8.6 5.8 

Table C2 - Mixture Vo umetric Properties (corrected) 
Mix No. Gmm Gb Gmb Pb Gsb Gse Pba Pbe VMA Va VFA F:B 
C1 2.3279 1.035 2.2349 6.5 2.469 2.549 1.320 5.266 15.37 3.995 74.0 0.852 
C2 2.3466 1.035 2.2545 5.8 2.465 2.545 1.323 4.554 13.84 3.925 71.6 0.993 
C3 2.3486 1.035 2.2535 5.3 2.474 2.528 0.897 4.451 13.74 4.049 70.5 1.340 
F1 2.3378 1.035 2.2436 6.3 2.488 2.554 1.074 5.293 15.50 4.029 74.0 0.850 
F2 2.3752 1.035 2.2814 5.4 2.489 2.565 1.229 4.238 13.29 3.949 70.3 1.406 
F3C4 2.3466 1.035 2.2541 5.6 2.469 2.537 1.129 4.534 13.82 3.942 71.5 1.208 

Table C3 - Measured Asphalt Binder Properties (STOA, LTOA, % diff) 
Mix No. Penetration Viscosity Mix No. 

STOA LTOA %diff STOA LTOA %diff 

Mix No. 

0.1 mm 0.1mm %diff 
poises poises 

%diff 

C1 42 39 7.1 64,348 111,069 -72.6 
C2 40 36 10.0 87,063 117,500 -34.9 
C3 38 32 15.8 80,636 118,598 -47.1 
F1 36 28 22.2 89,653 169,535 -89.1 
F2 36 26 27.8 96,500 180,482 -87.0 

F3C4 38 32 15.8 71,391 117,212 -64.2 
Complex Modulus Phase Angle 

STOA LTOA %diff STOA LTOA %diff 
Pa Pa 

%diff 
degrees degrees 

%diff 

C1 7,590,700 8,257,500 -8.8 48.4 46.5 3.9 
C2 7,390,900 8,059,000 -9.0 49.9 48.0 3.8 
C3 7,858,300 9,225,200 -17.4 47.9 45.7 4.6 
F1 9,720,500 11,424,000 -17.5 47.5 45.0 5.3 
F2 9,760,900 11,491,000 -17.7 46.2 43.6 5.6 

F3C4 7,796,100 9,358,600 -20.0 47.9 45.5 5.0 
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Table C4 - Measure HMA Properties (STOA, LTOA, %diff) 
Mix No. Resilient Modulus Cree ) Compliance Mix No. 

STOA LTOA %diff STOA LTOA %diff 

Mix No. 

0.1 mm 0.1mm 
%diff 

poises poises 
%diff 

C1 7.9 9.6 21.5 13.9 4.5 -67.6 
C2 7.7 11.9 54.5 15.1 2.8 -81.5 
C3 11.5 14.2 23.5 7.6 2.2 -71.1 
F1 9.5 9.9 4.2 7.9 4.5 -43.0 
F2 8.6 12.9 50.0 6 1.9 -68.3 

F3C4 12 13.9 15.8 6.3 1.9 -69.8 
M-value Fracture Energy 

STOA LTOA %diff STOA LTOA %diff 
Pa Pa 

%diff 
degrees degrees 

%diff 

C1 0.7961 0.5480 -31.2 5.8 3.5 -39.7 
C2 0.7729 0.5856 -24.2 4.8 2.9 -39.6 
C3 0.6563 0.4977 -24.2 3.5 2.7 -22.9 
F1 0.6560 0.5726 -12.7 4.2 2.8 -33.3 
F2 0.5649 0.4955 -12.3 5.4 3.2 -40.7 

F3C4 0.5817 0.5039 -13.4 3.7 1.7 -54.1 
Failure Strain Tensile Strength 

STOA LTOA %diff STOA LTOA %diff 
Pa Pa 

%diff 
degrees degrees 

%diff 

C1 4629.8 2224.4 -52.0 1.6 2.1 31.3 
C2 3771.3 1896.7 -49.7 1.7 2.1 23.5 
C3 2174.0 1468.3 -32.5 2.1 2.4 14.3 
F1 2919.6 1833.3 -37.2 2.1 2.1 0.0 
F2 3714.6 1526.2 -58.9 1.9 2.6 36.8 

F3C4 2419.0 1174.7 -51.4 2 2.2 10.0 
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Figure C1 - Impact of STOA and LTOA on Penetration of Binder 
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Figure C6a - Percent Change in Mix Properties 
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